GENERALIZED K-PARTICLE BRILLOUIN CONDITIONS AND THEIR USE FOR THE CONSTRUCTION OF CORRELATED ELECTRONIC WAVEFUNCTIONS

被引:47
作者
KUTZELNIGG, W
机构
[1] Ruhr-Universität Bochum
关键词
D O I
10.1016/0009-2614(79)80537-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The variational form of the Schrödinger equation is shown to be equivalent to a set of generalized Brillouin conditions in terms of arbitrary antihermitean operators R. For a special choice of these R in second-quantization language, k-particle Brillouin conditions are derived that are a generalization of the generalized one-particle Brillouin conditions" of Levy and Berthier. The application of these conditions to one-particle and two-particle hamiltonians is discussed. A two-particle generalization of the Fock operator is derived and an iterative variational pair-cluster scheme is derived. It is shown that CEPA and SCEP methods satisfy an approximate rather than an exact set of Brilouin conditions. © 1979."
引用
收藏
页码:383 / 387
页数:5
相关论文
共 16 条
[1]  
BRILLOUIN L, 1933, ACTUAL SCI IND, P71
[2]  
BRILLOUIN L, 1934, ACTUAL SCI IND, P159
[3]  
CIZEK J, 1966, J CHEM PHYS, V45, P4256
[4]   SHORT-RANGE CORRELATIONS IN NUCLEAR WAVE FUNCTIONS [J].
COESTER, F ;
KUMMEL, H .
NUCLEAR PHYSICS, 1960, 17 (03) :477-485
[5]   STRUCTURE OF FERMION DENSITY MATRICES [J].
COLEMAN, AJ .
REVIEWS OF MODERN PHYSICS, 1963, 35 (03) :668-&
[6]  
ERDAHL RM, 1978, INT J QUANTUM CHEM, V13, P6
[7]  
Hausdorff F., 1906, BER VERH KGL SCHS GE, V58, P19
[8]  
KUMMEL H, 1978, PHYS REP C, V36, P2
[9]  
KUTZELNIGG W, 1977, MODERN THEORETICAL C, V3, P129
[10]  
KUTZELNIGG W, 1977, FARADAY DISCUSS, V62, P185