PARTICLE-SIZE, VOLUME FRACTION AND MATRIX STRENGTH EFFECTS ON FATIGUE BEHAVIOR AND PARTICLE FRACTURE IN 2124 ALUMINUM-SICP COMPOSITES

被引:128
作者
HALL, JN
JONES, JW
SACHDEV, AK
机构
[1] GM CORP,NAO MEG CTR,WARREN,MI 48090
[2] GM CORP,RES & DEV,WARREN,MI 48090
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 1994年 / 183卷 / 1-2期
关键词
D O I
10.1016/0921-5093(94)90891-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The effects of particle size, volume fraction and matrix strength on the stress-controlled axial fatigue behavior and the probability of particle fracture were evaluated for 2124 aluminum alloy reinforced with SiC particles. Average particle sizes of 2, 5, 9 and 20 mum and volume fractions of 0.10, 0.20 and 0.35 were examined for four different microstructural conditions. Tensile and yield strengths and fatigue life were substantially higher in the reinforced alloys. Strength and fatigue life increased as reinforcement particle size decreased and volume fraction loading increased. The frequency of particle fracture during crack propagation was found to be dependent on matrix strength, particle size and volume fraction and on maximum crack tip stress intensity. Particle fracture can be rationalized, phenomenologically, by the application of modified process zone models, originally derived for static fracture processes, and weakest link statistics which account for the dependence of matrix yield strength and flow behavior and particle strength on the probability of particle fracture during monotonic fracture and fatigue crack propagation.
引用
收藏
页码:69 / 80
页数:12
相关论文
共 52 条
[1]   THE ROLE OF EQUIAXED PARTICLES ON THE YIELD STRESS OF COMPOSITES [J].
AIKIN, RM ;
CHRISTODOULOU, L .
SCRIPTA METALLURGICA ET MATERIALIA, 1991, 25 (01) :9-14
[2]   THE STRENGTHENING OF ALUMINUM ALLOY-6061 BY FIBER AND PLATELET SILICON-CARBIDE [J].
ARSENAULT, RJ .
MATERIALS SCIENCE AND ENGINEERING, 1984, 64 (02) :171-181
[3]   STRENGTHENING OF COMPOSITES DUE TO MICROSTRUCTURAL CHANGES IN THE MATRIX [J].
ARSENAULT, RJ ;
WANG, L ;
FENG, CR .
ACTA METALLURGICA ET MATERIALIA, 1991, 39 (01) :47-57
[4]   DAMAGE DUE TO FRACTURE OF BRITTLE REINFORCEMENTS IN A DUCTILE MATRIX [J].
BAO, G .
ACTA METALLURGICA ET MATERIALIA, 1992, 40 (10) :2547-2555
[5]   FATIGUE BEHAVIOR OF A 2XXX SERIES ALUMINUM-ALLOY REINFORCED WITH 15 VOL PCT SICP [J].
BONNEN, JJ ;
ALLISON, JE ;
JONES, JW .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1991, 22 (05) :1007-1019
[6]   MICROSTRUCTURAL DEVELOPMENT IN AN ALUMINUM ALLOY-SIC WHISKER COMPOSITE [J].
CHRISTMAN, T ;
SURESH, S .
ACTA METALLURGICA, 1988, 36 (07) :1691-1704
[7]  
CROWE CR, 1982, STRENGTH METALS ALLO, V2, P859
[8]   FRACTURE CHARACTERISTICS OF AL-4 PCT MG MECHANICALLY ALLOYED WITH SIC [J].
DAVIDSON, DL .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1987, 18 (12) :2115-2128
[9]   THE EFFECT OF PARTICULATE SIC ON FATIGUE CRACK-GROWTH IN A CAST-EXTRUDED ALUMINUM-ALLOY COMPOSITE [J].
DAVIDSON, DL .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1991, 22 (01) :97-112