A POSSIBLE ROLE OF ER-60 PROTEASE IN THE DEGRADATION OF MISFOLDED PROTEINS IN THE ENDOPLASMIC-RETICULUM

被引:96
作者
OTSU, M
URADE, R
KITO, M
OMURA, F
KIKUCHI, M
机构
[1] PROT ENGN RES INST,SUITA,OSAKA 565,JAPAN
[2] KYOTO UNIV,FOOD SCI RES INST,UJI,KYOTO 611,JAPAN
关键词
D O I
10.1074/jbc.270.25.14958
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Wild-type human lysozyme (hLZM) is secreted when expressed in mouse L cells, whereas misfolded mutant hLZMs are retained and eventually degraded in a pre-Golgi compartment (Omura, F., Otsu, M., Yoshimori, T., Tashiro, Y., and Kikuchi, M. (1992) Eur. J. Biochem. 210, 591-599). These misfolded mutant hLZMs are associated with protein disulfide isomerase (Otsu, M., Omura, F., Yoshimori, T., and Kikuchi, M. (1994) J. Biol. Chem. 269, 6874-6877). From the observation that this degradation is sensitive to cysteine protease inhibitors, such as N-acetyl-leucyl-leucyl-norleucinal and N-acetyl-leucyl-leucyl-methioninal, but not to the serine protease inhibitors, 1-chloro-3-tosylamido-7-amino-2-heptanone and (p-amidinophenyl)methanesulfonyl fluoride, it was suggested that some cysteine proteases are likely responsible for the degradation of abnormal proteins in the endoplasmic reticulum (ER). ER-60 protease (ER-60), an ER resident protein with cysteine protease activity (Urade, R., Nasu, M., Moriyama, T., Wada, K., and Kito, M. (1992) J. Biol. Chem. 267, 15152-15159), was found to associate with misfolded hLZMs, but not with the wildtype protein, in mouse L cells. Furthermore, denatured hLZM is degraded by ER-60 in vitro, whereas native hLZM is not. These results suggest that ER-60 could be a component of the proteolytic machinery for the degradation of misfolded mutant hLZMs in the ER.
引用
收藏
页码:14958 / 14961
页数:4
相关论文
共 32 条