TIGHT RIGOROUS BOUNDS TO ATOMIC INFORMATION ENTROPIES

被引:60
作者
ANGULO, JC
DEHESA, JS
机构
[1] Departamento de Física Moderna, Facultad de Ciencias, Universidad de Granada
关键词
D O I
10.1063/1.463710
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The position-space entropy S(rho) and the momentum-space entropy S(gamma) are two increasingly important quantities in the study of the structure and scattering phenomena of atomic and molecular systems. Here, an information-theoretic method which makes use of the Bialynicki-Birula and Mycielski's inequality is described to find rigorous upper and lower bounds to these two entropies in a com.pact, simple and transparent form. The upper bounds to S(rho) are given in terms of radial expectation values [r(alpha)] and/or the mean logarithmic radii [ln r] and [(ln r)2], whereas the lower bounds depend on the momentum expectation values [p(alpha)] and/or the mean logarithmic momenta [ln p] and [(ln p)2]. Similar bounds to S(gamma) are also shown in a parallel way. A near Hartree-Fock numerical analysis for all atoms with Z less-than-or-equal-to 54 shows that some of these bounds are so tight that they may be used as computational values for the corresponding quantities. The role of the mean logarithmic radius [ln r] and the mean logarithmic momentum [ln p] in the improvement of accuracy of the aforementioned bounds is certainly striking.
引用
收藏
页码:6485 / 6495
页数:11
相关论文
共 45 条
[1]   ENTROPY AND CHEMICAL CHANGE .3. MAXIMAL ENTROPY (SUBJECT TO CONSTRAINTS) PROCEDURE AS A DYNAMICAL THEORY [J].
ALHASSID, Y ;
LEVINE, RD .
JOURNAL OF CHEMICAL PHYSICS, 1977, 67 (10) :4321-4339
[2]  
[Anonymous], 1996, TABLES INTEGRALS SER
[3]  
Aslangul C., 1972, ADV QUANTUM CHEM, V6
[4]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[5]  
Benesch R., 1973, WAVE MECH THE 1 50 Y, P357
[6]   UNCERTAINTY RELATIONS FOR INFORMATION ENTROPY IN WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 44 (02) :129-132
[7]   ENTROPIC UNCERTAINTY RELATIONS [J].
BIALYNICKIBIRULA, I .
PHYSICS LETTERS A, 1984, 103 (05) :253-254
[8]  
Clementi E., 1974, Atomic Data and Nuclear Data Tables, V14, P177, DOI 10.1016/S0092-640X(74)80016-1
[9]   MAXIMUM ENTROPY HISTOGRAMS [J].
COLLINS, R ;
WRAGG, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (09) :1441-1464
[10]   UNCERTAINTY IN QUANTUM MEASUREMENTS [J].
DEUTSCH, D .
PHYSICAL REVIEW LETTERS, 1983, 50 (09) :631-633