FULLY NONLINEAR PHASE FIELD-EQUATIONS AND GENERALIZED MEAN-CURVATURE MOTION

被引:2
作者
JERRARD, RL
机构
[1] University of California, Berkeley
关键词
D O I
10.1080/03605309508821092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:233 / 265
页数:33
相关论文
共 25 条
[1]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[2]   FRONT PROPAGATION AND PHASE FIELD-THEORY [J].
BARLES, G ;
SONER, HM ;
SOUGANIDIS, PE .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (02) :439-469
[3]  
Brakke K. A., 1978, MATH NOTES+, V20
[4]   MOTION BY MEAN-CURVATURE AS THE SINGULAR LIMIT OF GINZBURG-LANDAU DYNAMICS [J].
BRONSARD, L ;
KOHN, RV .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (02) :211-237
[5]   GENERATION AND PROPAGATION OF INTERFACES FOR REACTION DIFFUSION-EQUATIONS [J].
CHEN, XF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 96 (01) :116-141
[6]  
CHEN YG, 1991, J DIFFER GEOM, V33, P749
[7]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[8]  
DEMASI A, 1992, CARR2992 REP
[9]  
DEMASI A, 1992, CARR2892 REP
[10]  
DEMASSI A, 1992, MOTION CURVATURE SCA