COSMIC TEMPERATURE-FLUCTUATIONS FROM 2 YEARS OF COBE DIFFERENTIAL MICROWAVE RADIOMETERS OBSERVATIONS

被引:254
作者
BENNETT, CL
KOGUT, A
HINSHAW, G
BANDAY, AJ
WRIGHT, EL
GORSKI, KM
WILKINSON, DT
WEISS, R
SMOOT, GF
MEYER, SS
MATHER, JC
LUBIN, P
LOEWENSTEIN, K
LINEWEAVER, C
KEEGSTRA, P
KAITA, E
JACKSON, PD
CHENG, ES
机构
[1] NASA, GODDARD SPACE FLIGHT CTR, UNIV SPACE RES ASSOC, GREENBELT, MD 20771 USA
[2] UNIV CALIF LOS ANGELES, DEPT ASTRON, LOS ANGELES, CA 90024 USA
[3] PRINCETON UNIV, DEPT PHYS, PRINCETON, NJ 08540 USA
[4] MIT, DEPT PHYS, CAMBRIDGE, MA 02139 USA
[5] UNIV CALIF BERKELEY, LAWRENCE BERKELEY LAB, BERKELEY, CA 94720 USA
[6] UNIV CHICAGO, ENRICO FERMI INST, DEPT ASTRON & ASTROPHYS, CHICAGO, IL 60637 USA
[7] UNIV CALIF SANTA BARBARA, DEPT PHYS, SANTA BARBARA, CA 93106 USA
关键词
COSMIC MICROWAVE BACKGROUND; COSMOLOGY; OBSERVATIONS; LARGE-SCALE STRUCTURE OF UNIVERSE;
D O I
10.1086/174918
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The first two years of COBE Differential Microwave Radiometers (DMR) observations of the cosmic microwave background (CMB) anisotropy are analyzed and compared with our previously published first year results. The results are consistent, but the addition of the second year of data increases the precision and accuracy of the detected CMB temperature fluctuations. The 2 yr 53 GHz data are characterized by rms temperature fluctuations of (Delta T)(rms)(7 degrees) = 44 +/- 7 mu K and (Delta T)(rms)(10 degrees) = 30.5 +/- 2.7 mu K at 7 degrees and 10 degrees angular resolution, respectively. The 53 x 90 GHz cross-correlation amplitude at zero lag is C(0)(1/2) = 36 +/- 5 mu K (68% CL) for the unsmoothed (7 degrees resolution) DMR data. We perform a likelihood analysis of the cross-correlation function, with Monte Carlo simulations to infer biases of the method, for a power-law model of initial density fluctuations, P(k) proportional to k(n). The Monte Carlo simulations indicate that derived estimates of n are biased by +0.11 +/- 0.0l, while the subset of simulations with a low quadrupole (as observed) indicate a bias of +0.31 +/- 0.04. Derived values for 68% confidence intervals are given corrected (and not corrected) for our estimated biases. Including the quadrupole anisotropy, the most likely quadrupole-normalized amplitude is Q(rms-PS) = 14.3(-3.3)(+5.2) mu K (12.8(-3.3)(+5.2) mu K) with a spectral index n = 1.42(0.55)(+0.49) (n = 1.53(-0.55)(+0.49)). With n fixed to 1.0 the most likely amplitude is 18.2 +/- 1.5 mu K (17.4 +/- 1.5 mu K). The marginal likelihood of n is 1.42 +/- 0.37 (1.53 +/- 0.37). Excluding the quadrupole anisotropy, the most likely quadrupole-normalized amplitude is Q(rms-PS) = 17.4(-5.2)(+7.5) mu K (15.8(-5.2)(+7.5) mu K) with a spectral index n = 1.11(-0.55)(+0.60) (n = 1.22(-0.55)(+0.60)) With n fixed to 1.0 the most likely amplitude is 18.6 +/- 1.6 mu K (18.2 +/- 1.6 mu K). The marginal likelihood of n is 1.11 +/- 0.40 (1.22 +/- 0.40). Our best estimate of the dipole from the 2 yr DMR data is 3.363 +/- 0.024 mK toward Galactic coordinates (l, b) = (264 degrees.4 +/- 0 degrees.2, +48 degrees.1 +/- 0 degrees.4), and our best estimate of the rms quadrupole amplitude in our sky is 6 +/- 3 mu K (68% CL).
引用
收藏
页码:423 / 442
页数:20
相关论文
共 77 条
[1]   REDISCOVERING POMPEII [J].
ADAM, JP .
ANNALES-ECONOMIES SOCIETES CIVILISATIONS, 1992, 47 (02) :426-427
[2]   THE ORIGIN OF CHEMICAL ELEMENTS [J].
ALPHER, RA ;
BETHE, H ;
GAMOW, G .
PHYSICAL REVIEW, 1948, 73 (07) :803-804
[3]  
[Anonymous], 1973, GRAVITATION
[4]  
Barker F. S., 1986, EOS Transactions of the American Geophysical Union, V67, P523
[5]   THE 3-DIMENSIONAL POWER SPECTRUM MEASURED FROM THE APM GALAXY SURVEY .1. USE OF THE ANGULAR-CORRELATION FUNCTION [J].
BAUGH, CM ;
EFSTATHIOU, G .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1993, 265 (01) :145-156
[6]   NONCOSMOLOGICAL SIGNAL CONTRIBUTIONS TO THE COBE1 DMR ANISOTROPY MAPS [J].
BENNETT, CL ;
HINSHAW, G ;
BANDAY, A ;
KOGUT, A ;
WRIGHT, EL ;
LOEWENSTEIN, K ;
CHENG, ES .
ASTROPHYSICAL JOURNAL, 1993, 414 (02) :L77-L80
[7]   PRELIMINARY SEPARATION OF GALACTIC AND COSMIC MICROWAVE EMISSION FOR THE COBE DIFFERENTIAL MICROWAVE RADIOMETER [J].
BENNETT, CL ;
SMOOT, GF ;
HINSHAW, G ;
WRIGHT, EL ;
KOGUT, A ;
DEAMICI, G ;
MEYER, SS ;
WEISS, R ;
WILKINSON, DT ;
GULKIS, S ;
JANSSEN, M ;
BOGGESS, NW ;
CHENG, ES ;
HAUSER, MG ;
KELSALL, T ;
MATHER, JC ;
MOSELEY, SH ;
MURDOCK, TL ;
SILVERBERG, RF .
ASTROPHYSICAL JOURNAL, 1992, 396 (01) :L7-&
[8]   COBE DIFFERENTIAL MICROWAVE RADIOMETERS - CALIBRATION TECHNIQUES [J].
BENNETT, CL ;
SMOOT, GF ;
JANSSEN, M ;
GULKIS, S ;
KOGUT, A ;
HINSHAW, G ;
BACKUS, C ;
HAUSER, MG ;
MATHER, JC ;
ROKKE, L ;
TENORIO, L ;
WEISS, R ;
WILKINSON, DT ;
WRIGHT, EL ;
DEAMICI, G ;
BOGGESS, NW ;
CHENG, ES ;
JACKSON, PD ;
KEEGSTRA, P ;
KELSALL, T ;
KUMMERER, R ;
LINEWEAVER, C ;
MOSELEY, SH ;
MURDOCK, TL ;
SANTANA, J ;
SHAFER, RA ;
SILVERBERG, RF .
ASTROPHYSICAL JOURNAL, 1992, 391 (02) :466-482
[9]   COBES CONSTRAINTS ON THE GLOBAL MONOPOLE AND TEXTURE THEORIES OF COSMIC STRUCTURE FORMATION [J].
BENNETT, DP ;
RHIE, SH .
ASTROPHYSICAL JOURNAL, 1993, 406 (01) :L7-L10
[10]   THE COBE MISSION - ITS DESIGN AND PERFORMANCE 2 YEARS AFTER LAUNCH [J].
BOGGESS, NW ;
MATHER, JC ;
WEISS, R ;
BENNETT, CL ;
CHENG, ES ;
DWEK, E ;
GULKIS, S ;
HAUSER, MG ;
JANSSEN, MA ;
KELSALL, T ;
MEYER, SS ;
MOSELEY, SH ;
MURDOCK, TL ;
SHAFER, RA ;
SILVERBERG, RF ;
SMOOT, GF ;
WILKINSON, DT ;
WRIGHT, EL .
ASTROPHYSICAL JOURNAL, 1992, 397 (02) :420-429