ENERGY FLUX AND GROUP-VELOCITY

被引:23
作者
HAYES, M [1 ]
MUSGRAVE, MJP [1 ]
机构
[1] UNIV LONDON IMPERIAL COLL SCI & TECHNOL,DEPT MATH,LONDON SW7 2AZ,ENGLAND
关键词
D O I
10.1016/0165-2125(79)90027-1
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Inhomogeneous plane wave solutions to the wave equations for a linear isotropic elastic solid and a linear isotropic dielectric are shown to possess energy flux velocity vectors which are non-coincident with corresponding group velocity vectors. In contrast to free surface waves, these examples imply a driving constraint and have an associated non-zero Lagrangian energy density. © 1979.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 7 条
[1]   NOTE ON GROUP VELOCITY [J].
HAYES, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1977, 354 (1679) :533-535
[2]  
LIGHTHILL MJ, 1965, J I MATH APPLICS, V1
[3]  
LORD RAYLEIGH, 1945, THEORY SOUND, V1, P475
[4]  
REYNOLDS O, 1900, SCI PAPERS, V1, P198
[5]  
Synge, 1956, P ROY IRISH ACAD A, V58, P13
[6]   A GENERAL APPROACH TO LINEAR AND NON-LINEAR DISPERSIVE WAVES USING A LAGRANGIAN [J].
WHITHAM, GB .
JOURNAL OF FLUID MECHANICS, 1965, 22 :273-&
[7]   NON-LINEAR DISPERSIVE WAVES [J].
WHITHAM, GB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1965, 283 (1393) :238-&