Q-ORTHOGONAL POLYNOMIALS AND THE OSCILLATOR QUANTUM GROUP

被引:75
作者
FLOREANINI, R [1 ]
VINET, L [1 ]
机构
[1] UNIV CALIF LOS ANGELES,DEPT PHYS,LOS ANGELES,CA 90024
关键词
D O I
10.1007/BF00400377
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The oscillator quantum algebra is shown to provide a group-theoretic setting for the q-Laguerre and q-Hermite polynomials.
引用
收藏
页码:45 / 54
页数:10
相关论文
共 37 条
[1]  
Abe E., 1980, HOPF ALGEBRAS
[2]   CANONICAL EQUATIONS AND SYMMETRY TECHNIQUES FOR Q-SERIES [J].
AGARWAL, AK ;
KALNINS, EG ;
MILLER, W .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (06) :1519-1538
[3]  
[Anonymous], 1989, INFINITE DIMENSIONAL
[4]   RAMANUJAN AND HYPERGEOMETRIC AND BASIC HYPERGEOMETRIC-SERIES (REPRINTED) [J].
ASKEY, R .
RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (01) :37-86
[5]   THE QUANTUM GROUP SUQ(2) AND A Q-ANALOGUE OF THE BOSON OPERATORS [J].
BIEDENHARN, LC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :L873-L878
[6]   SOME POLYNOMIALS RELATED TO THETA FUNCTIONS [J].
CARLITZ, L .
DUKE MATHEMATICAL JOURNAL, 1957, 24 (04) :521-527
[7]  
Carlitz L., 1956, ANN MAT PURA APPL, V41, P359, DOI DOI 10.1007/BF02411676
[8]   QUANTUM LIE-SUPERALGEBRAS AND Q-OSCILLATORS [J].
CHAICHIAN, M ;
KULISH, P .
PHYSICS LETTERS B, 1990, 234 (1-2) :72-80
[9]  
Drinfel'd V. G., 1987, PROC INT CONG MATH, V1, P798
[10]  
Erdelyi A, 1953, HIGHER TRANSCENDENTA, VII