CASCADING SYNCHRONIZED CHAOTIC SYSTEMS

被引:140
作者
CARROLL, TL
PECORA, LM
机构
[1] Code 6341, Naval Research Lab, Washington
来源
PHYSICA D | 1993年 / 67卷 / 1-3期
关键词
D O I
10.1016/0167-2789(93)90201-B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In recent work we have shown how one chaotic system may be synchronized with another by sending a signal from one to the other. In this paper, we demonstrate the cascading of synchronized chaotic systems. Such cascading allows the reproduction of all of the signals in the original chaotic system using only 1 signal. This configuration may be used as a ''chaos filter''. We also are able to vary a parameter in one chaotic system and, using only the chaotic signal, cause the corresponding parameter in another chaotic system to track these variations. This is a chaotic analog to a phase locked loop.
引用
收藏
页码:126 / 140
页数:15
相关论文
共 12 条
[1]  
ABRAHAM RH, 1989, DYNAMICS GEOMETRY 1
[2]  
Carroll T. L., 1992, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, V2, P659, DOI 10.1142/S021812749200077X
[3]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[4]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[5]  
Hayashi C., 1964, NONLINEAR OSCILLATIO
[6]  
Moon F.C., 1987, CHAOTIC VIBRATIONS
[7]  
OPPENHEIM AV, 1992, P INT C ACOUSTICS SP, V4, P113
[8]   DRIVING SYSTEMS WITH CHAOTIC SIGNALS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW A, 1991, 44 (04) :2374-2383
[9]   NONLINEAR RESONANCES AND SUPPRESSION OF CHAOS IN THE RF-BIASED JOSEPHSON JUNCTION [J].
PLAPP, BB ;
HUBLER, AW .
PHYSICAL REVIEW LETTERS, 1990, 65 (18) :2302-2305
[10]  
Thompson J. M. T., 2002, NONLINEAR DYNAMICS C