AN ALGORITHMIC PROOF OF SUSLINS STABILITY THEOREM FOR POLYNOMIAL-RINGS

被引:47
作者
PARK, HJ [1 ]
WOODBURN, C [1 ]
机构
[1] PITTSBURG STATE UNIV,DEPT MATH,PITTSBURG,KS 66762
关键词
D O I
10.1006/jabr.1995.1349
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a field. Then Gaussian elimination over k and the Euclidean division algorithm for the univariate polynomial ring k[x] allow us to write any matrix in SL(n)(k) or SL(n)(k[x]), n greater than or equal to 2, as a product of elementary matrices. Suslin's stability theorem states that the same is true for SL(n)(k[x(l),...,x(m)]) with n greater than or equal to 3 and m greater than or equal to 1. In this paper, we present an algorithmic proof of Suslin's stability theorem, thus providing a method for finding an explicit factorization of a given polynomial matrix into elementary matrices. Grobner basis techniques may be used in the implementation of the algorithm. (C) 1995 Academic Press, Inc.
引用
收藏
页码:277 / 298
页数:22
相关论文
共 17 条
[1]  
COHN PM, 1966, I HAUTES ETUDES SCI, V30, P365
[2]  
COX D, 1992, IDEALS VARIETIES ALG
[3]  
FITCHAS N, 1993, COMP COMPLEXITY, V3, P31
[4]  
FITCHAS N, 1990, MATH NACHR, V149, P232
[5]   ON SYMPLECTIC GROUPS OVER POLYNOMIAL-RINGS [J].
GRUNEWALD, F ;
MENNICKE, J ;
VASERSTEIN, L .
MATHEMATISCHE ZEITSCHRIFT, 1991, 206 (01) :35-56
[6]  
GUPTA SK, 1980, INDIAN STATISTICAL I, V8
[7]  
KALKER T, 1995, P ICASSP 95 INT C AC
[8]  
Knus M.-A., 1991, GRUNDLEHREN MATH WIS, V294
[9]  
LAM TY, 1978, LECTURE NOTES MATH, V635
[10]   ALGORITHMS FOR THE QUILLEN-SUSLIN THEOREM [J].
LOGAR, A ;
STURMFELS, B .
JOURNAL OF ALGEBRA, 1992, 145 (01) :231-239