DOMAIN DECOMPOSITION METHODS FOR SYSTEMS OF CONSERVATION-LAWS - SPECTRAL COLLOCATION APPROXIMATIONS

被引:25
作者
QUARTERONI, A
机构
[1] UNIV CATTOLICA MILAN,DIPARTIMENTO MATEMAT,I-25121 BRESCIA,ITALY
[2] CNR,IST ANAL NUMER,I-27100 PAVIA,ITALY
来源
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING | 1990年 / 11卷 / 06期
关键词
D O I
10.1137/0911058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1029 / 1052
页数:24
相关论文
共 15 条
[1]  
[Anonymous], 1971, ITERATIVE SOLUTION L
[2]  
CAMBIER L, 1982, COMPUTER METHODS APP, V5, P423
[3]   ON THE BOUNDARY TREATMENT IN SPECTRAL METHODS FOR HYPERBOLIC SYSTEMS [J].
CANUTO, C ;
QUARTERONI, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 71 (01) :100-110
[4]  
CANUTO C, 1988, MATH COMPUT, V51, P615, DOI 10.1090/S0025-5718-1988-0930226-2
[5]  
Canuto C., 2012, SPECTRAL METHODS EVO
[6]  
CHAN TF, 1988, DOMAIN DECOMPOSITION, V2
[7]   ON NUMERICAL BOUNDARY TREATMENT OF HYPERBOLIC SYSTEMS FOR FINITE-DIFFERENCE AND FINITE-ELEMENT METHODS [J].
GOTTLIEB, D ;
GUNZBURGER, M ;
TURKEL, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :671-682
[8]  
GOTTLIEB D, 1988, METHODES SPECTRALES, P51
[9]  
GOTTLIEB D, 1988, METHODES SPECTRALES, P63
[10]   A SPECTRAL MULTIDOMAIN METHOD FOR THE SOLUTION OF HYPERBOLIC SYSTEMS [J].
KOPRIVA, DA .
APPLIED NUMERICAL MATHEMATICS, 1986, 2 (3-5) :221-241