In Situ NMR Studies of Lithium Ion Batteries

被引:38
作者
Trease, Nicole M. [1 ]
Koester, Thomas K. -J. [2 ]
Grey, Clare P. [3 ]
机构
[1] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[2] Univ Munster, Munster, Germany
[3] Univ Geoffrey Moorhouse Gibson, Chem Dept Cambridge, Inorgan Chem, Cambridge, England
关键词
D O I
10.1149/2.F07113if
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In situ nuclear magnetic resonance (NMR) has now been implemented by a number of groups and provides a non-invasive means to study electrochemically induced structural changes, as of lithium ion batteries (LIBs). Since graphitic carbon is the most common anode material in commercial Li-ion batteries, with a capacity of 372 mAh/g, it seems appropriate that the first 7Li in situ NMR studies were carried out on these electrodes. Lithium metal, by definition, must have the highest capacity of all lithium based anode materials and will also give the highest cell voltage. Silicon represents a promising anode material for lithium ion batteries, as it offers very high specific capacities of about 3600 mAh/g. Resolution will be a concern in many systems, although methods for separating different signals, based on relaxation times or possibly double resonance NMR experiments, may help to resolve the signals from different environments.
引用
收藏
页码:69 / 73
页数:5
相关论文
共 19 条
[1]  
Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/nmat2764, 10.1038/NMAT2764]
[2]  
Chandrashekar S., UNPUB
[3]   In situ 7Li-nuclear magnetic resonance observation of reversible lithium insertion into disordered carbons [J].
Chevallier, F ;
Letellier, M ;
Morcrette, M ;
Tarascon, JM ;
Frackowiak, E ;
Rouzaud, JN ;
Béguin, F .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (11) :A225-A228
[4]   In situ nuclear magnetic resonance investigations of lithium ions in carbon electrode materials using a novel detector [J].
Gerald, RE ;
Sanchez, J ;
Johnson, CS ;
Klingler, RJ ;
Rathke, JW .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (36) :8269-8285
[5]   7Li NMR study of intercalated lithium in curved carbon lattices [J].
Gerald, RE ;
Klingler, RJ ;
Sandí, G ;
Johnson, CS ;
Scanlon, LG ;
Rathke, JW .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :237-243
[6]   NMR studies of cathode materials for lithium-ion rechargeable batteries [J].
Grey, CP ;
Dupré, N .
CHEMICAL REVIEWS, 2004, 104 (10) :4493-4512
[7]   In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon [J].
Hatchard, TD ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (06) :A838-A842
[8]   Silicon/graphite composite electrodes for high-capacity anodes:: Influence of binder chemistry on cycling stability [J].
Hochgatterer, N. S. ;
Schweiger, M. R. ;
Koller, S. ;
Raimann, P. R. ;
Woehrle, T. ;
Wurm, C. ;
Winter, M. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (05) :A76-A80
[9]   Nano silicon for lithium-ion batteries [J].
Holzapfel, Michael ;
Buqa, Hilmi ;
Hardwick, Laurence J. ;
Hahn, Matthias ;
Wuersig, Andreas ;
Scheifele, Werner ;
Novak, Petr ;
Koetz, Ruediger ;
Veit, Claudia ;
Petrat, Frank-Martin .
ELECTROCHIMICA ACTA, 2006, 52 (03) :973-978
[10]   Pair Distribution Function Analysis and Solid State NMR Studies of Silicon Electrodes for Lithium Ion Batteries: Understanding the (De)lithiation Mechanisms [J].
Key, Baris ;
Morcrette, Mathieu ;
Tarascon, Jean-Marie ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (03) :503-512