RUELLES TRANSFER OPERATOR FOR RANDOM SUBSHIFTS OF FINITE-TYPE

被引:58
作者
BOGENSCHUTZ, T [1 ]
GUNDLACH, VM [1 ]
机构
[1] UNIV BREMEN, INST DYNAM SYST, D-28334 BREMEN, GERMANY
关键词
D O I
10.1017/S0143385700008464
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Ruelle-Perron-Frobenius type of selection procedure for probability measures that are invariant under random subshifts of finite type. In particular we prove that for a class of random functions this method leads to a unique probability exhibiting properties that justify the names Gibbs measure and equilibrium states. In order to do this we introduce the notion of bundle random dynamical systems and provide a theory for their invariant measures as well as give a precise definition of Gibbs measures.
引用
收藏
页码:413 / 447
页数:35
相关论文
共 28 条
[1]  
Abramov L. M., 1966, AM MATH SOC TRANSL, V48, P255
[2]  
ADLER RL, 1970, MEM AM MATH SOC, V8
[3]  
ARNOLD L, 1991, LECT NOTES MATH, V1486, P1
[4]   EVOLUTIONARY FORMALISM FOR PRODUCTS OF POSITIVE RANDOM MATRICES [J].
Arnold, Ludwig ;
Gundlach, Volker Matthias ;
Demetrius, Lloyd .
ANNALS OF APPLIED PROBABILITY, 1994, 4 (03) :859-901
[5]  
Birkhoff Garrett., 1957, T AM MATH SOC, V85, P219, DOI 10.2307/1992971
[6]  
Bogenschutz, 1993, THESIS U BREMEN
[7]  
BOGENSCHUTZ T, 1992, LECT NOTES MATH, V1514, P32
[8]  
BOGENSCHUTZ T., 1992, RANDOM COMPUTATIONAL, V1, P219
[9]  
Bogenschutz T., 1992, RANDOM COMPUT DYN, V1, P99
[10]   MARKOV PARITIONS FOR AXIOM-A DIFFEOMORPHISMS [J].
BOWEN, R .
AMERICAN JOURNAL OF MATHEMATICS, 1970, 92 (03) :725-&