HAMILTONIAN HOPF-BIFURCATION WITH SYMMETRY

被引:56
作者
VANDERMEER, JC
机构
[1] Fac. Wiskunde en Inf., Tech. Univ. Eindhoven
关键词
D O I
10.1088/0951-7715/3/4/005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Studies Hamiltonian Hopf bifurcation in the presence of a compact symmetry group G. The author classifies the expected actions of G and show that near four-dimensional fixed point subspaces of subgroups of G*Si the bifurcation of periodic solutions is diffeomorphic to the standard Hamiltonian Hopf bifurcation in two degrees of freedom. Examples are given of O(2), SO(2) and SU(2) symmetry. Furthermore it is shown that Hamiltonian Hopf bifurcation with SO(2) symmetry occurs in the Euler-Poisson equations for the Lagrange rigid body motion.
引用
收藏
页码:1041 / 1056
页数:16
相关论文
共 9 条
[1]  
CUSHMAN R, 1988, LECTURE NOTES MATH, V1416
[2]  
DUISTERMAAT JJ, 1984, LECT NOTES MATH, V1057, P55
[3]  
GALIN DM, 1975, ASM T, V2, P118
[4]  
GOLUBEV V, 1960, LECTURES INTEGRATION
[5]  
MEYER KR, 1986, CONT MATH, V56, P373
[6]   PERIODIC-SOLUTIONS NEAR EQUILIBRIA OF SYMMETRIC HAMILTONIAN-SYSTEMS [J].
MONTALDI, JA ;
ROBERTS, RM ;
STEWART, IN .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1988, 325 (1584) :237-293
[7]   THE LAGRANGE RIGID BODY MOTION [J].
RATIU, T ;
VANMOERBEKE, P .
ANNALES DE L INSTITUT FOURIER, 1982, 32 (01) :211-234
[8]  
STEWART GM, 1987, PHYSICA D, V24, P391
[9]  
VANDERMEER JC, 1985, LECTURE NOTES MATH, V1160