ASSIGNMENTS, SECONDARY STRUCTURE, GLOBAL FOLD, AND DYNAMICS OF CHEMOTAXIS-Y PROTEIN USING 3-DIMENSIONAL AND 4-DIMENSIONAL HETERONUCLEAR (C-13,N-15) NMR-SPECTROSCOPY

被引:75
作者
MOY, FJ
LOWRY, DF
MATSUMURA, P
DAHLQUIST, FW
KRYWKO, JE
DOMAILLE, PJ
机构
[1] DUPONT MERCK PHARMACEUT CO, CHEM & PHYS SCI, WILMINGTON, DE 19880 USA
[2] UNIV OREGON, INST MOLEC BIOL, EUGENE, OR 97403 USA
[3] UNIV OREGON, DEPT CHEM, EUGENE, OR 97403 USA
[4] UNIV ILLINOIS, DEPT MICROBIOL & IMMUNOL, CHICAGO, IL 60612 USA
关键词
D O I
10.1021/bi00201a022
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
NMR spectroscopy has been used to study recombinant Escherichia coli CheY, a 128-residue protein involved in regulating bacterial chemotaxis. Heteronuclear three- and four-dimensional (3D and 4D) experiments have provided sequence-specific resonance assignments and quantitation of short-, medium-, and long-range distance restraints from nuclear Overhauser enhancement (NOE) intensities. These distance restraints were further supplemented with measurements of three-bond scalar coupling constants to define the local dihedral angles, and with the identification of amide protons undergoing slow solvent exchange from which hydrogen-bonding patterns were identified. The current model structure shows the same global fold of CheY as existing X-ray structures (Volt & Matsumura, 1991; Stock et al. 1993) with a (beta/alpha)(5) motif of five parallel beta-strands at the central core surrounded by three alpha-helices on one face and with two on the opposite side. Heteronuclear N-15-H-1 relaxation experiments are interpreted to show portions of the protein structure in the Mg2+ binding loop are ill-defined because of slow motion (chemical exchange) on the NMR time scale. Moreover, the presence of Mg2+ disrupts the salt bridge between the highly conserved Lys-109 and Asp-57, the site of phosphorylation.
引用
收藏
页码:10731 / 10742
页数:12
相关论文
共 69 条
[1]   PH-INDUCED DENATURATION OF PROTEINS - A SINGLE SALT BRIDGE CONTRIBUTES 3-5 KCAL MOL TO THE FREE-ENERGY OF FOLDING OF T4-LYSOZYME [J].
ANDERSON, DE ;
BECKTEL, WJ ;
DAHLQUIST, FW .
BIOCHEMISTRY, 1990, 29 (09) :2403-2408
[2]   AN ALTERNATIVE 3D-NMR TECHNIQUE FOR CORRELATING BACKBONE N-15 WITH SIDE-CHAIN H-BETA-RESONANCES IN LARGER PROTEINS [J].
ARCHER, SJ ;
IKURA, M ;
TORCHIA, DA ;
BAX, A .
JOURNAL OF MAGNETIC RESONANCE, 1991, 95 (03) :636-641
[3]   BACKBONE DYNAMICS OF CALMODULIN STUDIED BY N-15 RELAXATION USING INVERSE DETECTED 2-DIMENSIONAL NMR-SPECTROSCOPY - THE CENTRAL HELIX IS FLEXIBLE [J].
BARBATO, G ;
IKURA, M ;
KAY, LE ;
PASTOR, RW ;
BAX, A .
BIOCHEMISTRY, 1992, 31 (23) :5269-5278
[4]   REMOVAL OF F1-BASE-LINE DISTORTION AND OPTIMIZATION OF FOLDING IN MULTIDIMENSIONAL NMR-SPECTRA [J].
BAX, A ;
IKURA, M ;
KAY, LE ;
ZHU, G .
JOURNAL OF MAGNETIC RESONANCE, 1991, 91 (01) :174-178
[5]   H-1-H-1 CORRELATION VIA ISOTROPIC MIXING OF C-13 MAGNETIZATION, A NEW 3-DIMENSIONAL APPROACH FOR ASSIGNING H-1 AND C-13 SPECTRA OF C-13-ENRICHED PROTEINS [J].
BAX, A ;
CLORE, GM ;
GRONENBORN, AM .
JOURNAL OF MAGNETIC RESONANCE, 1990, 88 (02) :425-431
[6]   PRACTICAL ASPECTS OF PROTON CARBON CARBON PROTON 3-DIMENSIONAL CORRELATION SPECTROSCOPY OF C-13-LABELED PROTEINS [J].
BAX, A ;
CLORE, GM ;
DRISCOLL, PC ;
GRONENBORN, AM ;
IKURA, M ;
KAY, LE .
JOURNAL OF MAGNETIC RESONANCE, 1990, 87 (03) :620-627
[7]   PRECISE VICINAL COUPLING-CONSTANTS 3JHN-ALPHA IN PROTEINS FROM NONLINEAR FITS OF J-MODULATED [N-15,H-1]-COSY EXPERIMENTS [J].
BILLETER, M ;
NERI, D ;
OTTING, G ;
QIAN, YQ ;
WUTHRICH, K .
JOURNAL OF BIOMOLECULAR NMR, 1992, 2 (03) :257-274
[8]   SEQUENTIAL RESONANCE ASSIGNMENTS IN PROTEIN H-1 NUCLEAR MAGNETIC-RESONANCE SPECTRA - COMPUTATION OF STERICALLY ALLOWED PROTON PROTON DISTANCES AND STATISTICAL-ANALYSIS OF PROTON PROTON DISTANCES IN SINGLE-CRYSTAL PROTEIN CONFORMATIONS [J].
BILLETER, M ;
BRAUN, W ;
WUTHRICH, K .
JOURNAL OF MOLECULAR BIOLOGY, 1982, 155 (03) :321-346
[9]   NATURAL ABUNDANCE N-15 NMR BY ENHANCED HETERONUCLEAR SPECTROSCOPY [J].
BODENHAUSEN, G ;
RUBEN, DJ .
CHEMICAL PHYSICS LETTERS, 1980, 69 (01) :185-189
[10]   4-DIMENSIONAL HETERONUCLEAR TRIPLE RESONANCE NMR METHODS FOR THE ASSIGNMENT OF BACKBONE NUCLEI IN PROTEINS [J].
BOUCHER, W ;
LAUE, ED ;
CAMPBELLBURK, S ;
DOMAILLE, PJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (06) :2262-2264