GENERATING-FUNCTIONS FOR WZNW FUSION RULES

被引:14
作者
CUMMINS, CJ [1 ]
MATHIEU, P [1 ]
WALTON, MA [1 ]
机构
[1] UNIV LAVAL,DEPT PHYS,LAVAL G1K 7P4,QUEBEC,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0370-2693(91)91173-S
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Generating functions for fusion rules of Wess-Zumino-Novikov-Witten (WZNW) models are introduced. First the generating function for the cases su(2) and su(3) are given. We then conjecture a simple structure for the WZNW fusion rules in terms of the finite Lie algebra tensor products. One consequence is that a simple relationship holds between fusion rule generating functions and the corresponding generating functions for tensor product decompositions in finite Lie algebras. Furthermore, our generating functions provide closed and manifestly non-negative formulae for the fusion rules at all integer levels of WZNW models based on a given finite Lie algebra.
引用
收藏
页码:386 / 390
页数:5
相关论文
共 21 条
[1]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[2]   KRONECKER PRODUCTS FOR COMPACT SEMISIMPLE LIE-GROUPS [J].
BLACK, GRE ;
KING, RC ;
WYBOURNE, BG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (08) :1555-1589
[3]  
CUMMINS CJ, 1990, IN PRESS J PHYS A
[4]   QUANTUM GROUPS AND FUSION RULES MULTIPLICITIES [J].
FURLAN, P ;
GANCHEV, AC ;
PETKOVA, VB .
NUCLEAR PHYSICS B, 1990, 343 (01) :205-227
[5]   ON THE SPECTRUM OF 2D CONFORMAL FIELD-THEORIES [J].
GEPNER, D .
NUCLEAR PHYSICS B, 1987, 287 (01) :111-130
[6]   STRING THEORY ON GROUP-MANIFOLDS [J].
GEPNER, D ;
WITTEN, E .
NUCLEAR PHYSICS B, 1986, 278 (03) :493-549
[7]  
GODDARD P, 1985, PHYS LETT B, V152, P88, DOI 10.1016/0370-2693(85)91145-1
[8]   LITTLEWOOD-RICHARDSON COEFFICIENTS FOR HECKE ALGEBRAS AT ROOTS OF UNITY [J].
GOODMAN, FM ;
WENZL, H .
ADVANCES IN MATHEMATICS, 1990, 82 (02) :244-265
[9]   2 FACES OF A DUAL PION-QUARK MODEL [J].
HALPERN, MB .
PHYSICAL REVIEW D, 1971, 4 (08) :2398-&
[10]  
KAC V, 1989, AUG CAN MATH SOC M L