RELATIVISTIC WAVE-EQUATION FOR ANYONS

被引:176
作者
JACKIW, R
NAIR, VP
机构
[1] MIT,DEPT PHYS,CAMBRIDGE,MA 02139
[2] COLUMBIA UNIV,DEPT PHYS,NEW YORK,NY 10027
来源
PHYSICAL REVIEW D | 1991年 / 43卷 / 06期
关键词
D O I
10.1103/PhysRevD.43.1933
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Construction of one-particle states as unitary representations of the Poincare algebra in 2 + 1 dimensions shows that an anyon has one polarization state. However, for nonzero spin manifestly linear and covariant realizations of Lorentz transformations require more than one field component, and an infinite number is needed when the value of spin is not an integer of half-integer. We discuss the relation between these two aspects of Poincare symmetry. In particular, we construct a relativistic equation for anyons where the number of physical polarizations is reduced to one by virtue of a gauge symmetry or equivalent constraint.
引用
收藏
页码:1933 / 1942
页数:10
相关论文
共 42 条
[1]   STATISTICAL-MECHANICS OF ANIONS [J].
AROVAS, DP ;
SCHRIEFFER, R ;
WILCZEK, F ;
ZEE, A .
NUCLEAR PHYSICS B, 1985, 251 (01) :117-126
[2]  
Balachandran AP., 1983, GAUGE SYMMETRIES FIB, V1
[3]   RELATIVISTIC S-MATRIX OF DYNAMICAL-SYSTEMS WITH BOSON AND FERMION CONSTRAINTS [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICS LETTERS B, 1977, 69 (03) :309-312
[4]   A GENERALIZED CANONICAL FORMALISM AND QUANTIZATION OF REDUCIBLE GAUGE-THEORIES [J].
BATALIN, IA ;
FRADKIN, ES .
PHYSICS LETTERS B, 1983, 122 (02) :157-164
[5]   GAUGE ALGEBRA AND QUANTIZATION [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICS LETTERS B, 1981, 102 (01) :27-31
[6]   OPERATOR QUANTIZATION OF RELATIVISTIC DYNAMICAL-SYSTEMS SUBJECT TO 1ST CLASS CONSTRAINTS [J].
BATALIN, IA ;
FRADKIN, ES .
PHYSICS LETTERS B, 1983, 128 (05) :303-308
[7]   RELATIVISTIC FIELD-THEORIES IN 3 DIMENSIONS [J].
BINEGAR, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (08) :1511-1517
[8]   FRACTIONAL SPIN VIA CANONICAL QUANTIZATION OF THE O(3) NONLINEAR SIGMA MODEL [J].
BOWICK, MJ ;
KARABALI, D ;
WIJEWARDHANA, LCR .
NUCLEAR PHYSICS B, 1986, 271 (02) :417-428
[9]   LOCALITY AND THE STRUCTURE OF PARTICLE STATES [J].
BUCHHOLZ, D ;
FREDENHAGEN, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 84 (01) :1-54
[10]   SELF-DUALITY OF TOPOLOGICALLY MASSIVE GAUGE-THEORIES [J].
DESER, S ;
JACKIW, R .
PHYSICS LETTERS B, 1984, 139 (5-6) :371-373