THE HYPERMETRIC CONE IS POLYHEDRAL

被引:20
作者
DEZA, M
GRISHUKHIN, VP
LAURENT, M
机构
[1] ECOLE NORMALE SUPER,LIENS,F-75230 PARIS 05,FRANCE
[2] RUSSIAN ACAD SCI,CEMI,MOSCOW 117418,RUSSIA
关键词
D O I
10.1007/BF01303512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The hypermetric cone H(n) is the cone in the space R(n(n-1)/2) of all vectors d=(d(ij))1 less-than-or-equal-to i < j less-than-or-equal-to n satisfying the hypermetric inequalities: SIGMA1 less-than-or-equal-to i < j less-than-or-equal-to n z(j)z(j)d(ij) less-than-or-equal-to 0 for all integer vectors z in Z(n) with SIGMA1 less-than-or-equal-to i less-than-or-equal-to n z(i) = 1. We explore connections of the hypermetric cone with quadratic forms and the geometry of numbers (empty spheres and L-polytopes in lattices). As an application, we show that the hypermetric cone H(n) is polyhedral.
引用
收藏
页码:397 / 411
页数:15
相关论文
共 20 条
  • [1] ASSOUAD P, 1982, CR ACAD SCI I-MATH, V294, P439
  • [2] ASSOUAD P, 1980, ANN DISCRETE MATH, V8, P197
  • [3] Assouad P, 1984, EUR J COMBIN, V5, P99
  • [4] ALL THE FACETS OF THE 6-POINT HAMMING CONE
    AVIS, D
    MUTT
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1989, 10 (04) : 309 - 312
  • [5] ON THE EXTREME RAYS OF THE METRIC CONE
    AVIS, D
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (01): : 126 - 144
  • [6] THE CUT CONE, L1 EMBEDDABILITY, COMPLEXITY, AND MULTICOMMODITY FLOWS
    AVIS, D
    DEZA, M
    [J]. NETWORKS, 1991, 21 (06) : 595 - 617
  • [7] Baranovskii E.P., 1971, MATH NOTES, V10, P827
  • [8] CASSELS JWS, 1959, INTRO GEOMETRY NUMBE, V99
  • [9] CONWAY JH, 1987, 290 GRUNDL MATH WISS
  • [10] DEZA M, 1973, CR ACAD SCI A MATH, V277, P873