STRONGLY PERTURBED QUANTUM-SYSTEMS

被引:12
作者
FRASCA, M
机构
[1] 00176 Roma, 3, Via Erasmo Gattamelata
来源
PHYSICAL REVIEW A | 1993年 / 47卷 / 03期
关键词
D O I
10.1103/PhysRevA.47.2374
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive the integral form of the Schrodinger equation taking the Green function originating from the perturbation and prove the equivalence with the free representation. The equation is applied to a class of strong perturbing potentials of the form lambdaw(x)g (t) with lambda --> infinity. The method of stationary phase applied in this case gives the first terms of an asymptotic series for the probability amplitudes to find the system in one of the states of the unperturbed Hamiltonian, and these are shown to go to zero in the considered limit.
引用
收藏
页码:2374 / 2375
页数:2
相关论文
共 4 条
[1]  
DINGLE RB, 1973, ASYMPTOTIC EXPANSION, pCH6
[2]   STRONG-FIELD APPROXIMATION FOR THE SCHRODINGER-EQUATION [J].
FRASCA, M .
PHYSICAL REVIEW A, 1992, 45 (01) :43-46
[3]  
MERZBACHER E, 1970, QUANTUM MECHANICS, pCH18
[4]  
ZINNJUSTIN J, 1981, PHYS REP, V70, P111