A NEW-TYPE OF SIGNAL PEPTIDE - CENTRAL ROLE OF A TWIN-ARGININE MOTIF IN TRANSFER SIGNALS FOR THE DELTA-PH-DEPENDENT THYLAKOIDAL PROTEIN TRANSLOCASE

被引:214
作者
CHADDOCK, AM
MANT, A
KARNAUCHOV, I
BRINK, S
HERRMANN, RG
KLOSGEN, RB
ROBINSON, C
机构
[1] UNIV WARWICK,DEPT BIOL SCI,COVENTRY CV4 7AL,W MIDLANDS,ENGLAND
[2] UNIV MUNICH,INST BOT,D-80638 MUNICH,GERMANY
关键词
CHLOROPLAST; PROTEIN TRANSPORT; SIGNAL PEPTIDE; THYLAKOID BIOGENESIS;
D O I
10.1002/j.1460-2075.1995.tb07272.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Delta pH-driven and Sec-related thylakoidal protein translocases recognise distinct types of thylakoid transfer signal, yet all transfer signals resemble bacterial signal peptides in structural terms, Comparison of known transfer signals reveals a single concrete difference: signals for the Delta pH-dependent system contain a common twin-arginine motif immediately before the hydrophobic region, We show that this motif is critical for the Delta pH-driven translocation process; substitution of the arg-arg by gin-gin or even arglys totally blocks translocation across the thylakoid membrane, and replacement by lys-arg reduces the rate of translocation by >100-fold. The targeting information in this type of signal thus differs fundamentally from that of bacterial signal peptides, where the required positive charge can be supplied by any basic amino acid, Insertion of a twin-arg motif into a Sec-dependent substrate does not alter the pathway followed but reduces translocation efficiency, suggesting that the motif may also repel the Sec-type system. Other information must help to specify the choice of translocation mechanism, but this information is unlikely to reside in the hydrophobic region because substitution by a hydrophobic section from an integral membrane protein does not affect the translocation pathway.
引用
收藏
页码:2715 / 2722
页数:8
相关论文
共 13 条
[1]  
Akita M., Sasaki S., Matsuyama S., Mizushima S., J. Biol. Chem., 265, pp. 8164-8169, (1490)
[2]  
Bassham D.C., Bartling D., Mould R.M., Dunbar B., Weisbeck P., Herrmann R.G., Robinson C., J. Biol. Chem., 266, pp. 23606-23610, (1991)
[3]  
Buvy A., De Vrieze G., Borrias M., Weisbeck P., Plant Mol. Biol., 19, pp. 491-492, (1992)
[4]  
Briggs L.M., Peroraro V.L., McIntosh L., Plant Mol. Biol., 15, pp. 633-642, (1990)
[5]  
Brock I.W., Hazell L., Michl D., Nielsen V.S., Moller B.L., Herrmann R.G., Klosgen R.B., Robinson C., Plant Mol. Biol., 23, pp. 717-725, (1993)
[6]  
Shackleton J.B., Robinson C., J. Biol. Chem., 266, pp. 12152-12156, (1991)
[7]  
Shestakov S.V., Anbudurai P.R., Stanbekova G.E., Gadzhiev A., Lind L.K., Pakrasi H.B., J. Biol. Chem., 269, pp. 19354-19359, (1994)
[8]  
Sommer A., Ne'eman E., Steffens J.C., Mayer A.M., Harel E., Plant Physiol., 105, pp. 1301-1311, (1994)
[9]  
Steppuhn J., Hermans J., Nechushtai R., Ljungberg U., Thummler F., Lottspeich F., Herrmann R.G., FEBS Lett., 237, pp. 218-224, (1988)
[10]  
Theg S.M., Bauerle C., Olsen L., Selman B., Keegstra K., J. Biol. Chem., 264, pp. 6730-6736, (1989)