A neural system for automatic target learning and recognition applied to bare and camouflaged SAR targets

被引:11
作者
Bernardon, AM [1 ]
Carrick, JE [1 ]
机构
[1] MIT,LINCOLN LAB,MACHINE INTELLIGENCE TECHNOL GRP,LEXINGTON,MA 02173
关键词
target detection; target recognition; object learning; object recognition; SAR; ISAR; neural networks;
D O I
10.1016/0893-6080(95)00063-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a neural based approach to target learning and recognition in synthetic-aperture radar imagery. Targets consist of a variety of camouflaged and uncamouflaged military vehicles taken at different radar view and depression angles in both spotlight and stripmap radar collection modes. Results from a variety of recognition experiments are reported.
引用
收藏
页码:1103 / 1108
页数:6
相关论文
共 6 条
  • [1] ART 2-A - AN ADAPTIVE RESONANCE ALGORITHM FOR RAPID CATEGORY LEARNING AND RECOGNITION
    CARPENTER, GA
    GROSSBERG, S
    ROSEN, DB
    [J]. NEURAL NETWORKS, 1991, 4 (04) : 493 - 504
  • [2] Cutrona L., 1970, RADAR HDB
  • [3] DUDGEON DE, 1994, P SOC PHOTO-OPT INS, V2230, P356, DOI 10.1117/12.177192
  • [4] NOVAL KM, 1993, LINCOLN LABORATORY J, V5, P11
  • [5] Waxman A. M., 1993, Lincoln Laboratory Journal, V6, P77
  • [6] Neural processing of targets in visible multispectral IR and SAR imagery
    Waxman, AM
    Seibert, MC
    Gove, A
    Fay, DA
    Bernardon, AM
    Lazott, C
    Steele, WR
    Cunningham, RK
    [J]. NEURAL NETWORKS, 1995, 8 (7-8) : 1029 - 1051