HIGHER-ORDER APPROXIMATIONS IN WKB METHOD

被引:3
作者
GAROLA, C
机构
[1] Istituto di Fisica dell'Università, Torino
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS | 1969年 / 64卷 / 01期
关键词
D O I
10.1007/BF02824575
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider the method originally developed by Kemble and Dunham to find approximate solutions to the Schrödinger equation, inside the W. K. B. method, using complex integration techniques. We generalize it in order to afford the discussion about any degree of approximation whatsoever. We briefly apply the method to scattering theory, bound states and the tunnel effect. © 1969 Società Italiana di Fisica.
引用
收藏
页码:243 / +
相关论文
共 9 条
[1]   ON THEORY OF SCATTERING BY SINGULAR POTENTIALS [J].
BERTOCCH.L ;
FUBINI, S ;
FURLAN, G .
NUOVO CIMENTO, 1965, 35 (02) :633-+
[2]   POTENTIAL SCATTERING FOR COMPLEX ENERGY AND ANGULAR MOMENTUM [J].
BOTTINO, A ;
LONGONI, AM ;
REGGE, T .
NUOVO CIMENTO, 1962, 23 (06) :954-+
[3]  
CHERRY TM, 1950, T AM MATH SOC, V68, P224
[4]  
De Alfaro V., 1965, POTENTIAL SCATTERING
[5]   The Wentzel-Brillouin-Kramers method of solving the wave equation [J].
Dunham, JL .
PHYSICAL REVIEW, 1932, 41 (06) :713-720
[6]  
GAROLA C, HIGHER ORDER APPROXI
[7]   A contribution to the theory of the BWK method [J].
Kemble, EC .
PHYSICAL REVIEW, 1935, 48 (06) :549-561
[8]  
KEMBLE EC, 1958, FUNDAMENTAL PRINCIPL
[9]  
MORSE P, METHODS THEORETICAL, V2, P1101