FINITE-ELEMENT METHOD FOR BURGERS EQUATION IN HYDRODYNAMICS

被引:23
作者
ARMINJON, P
BEAUCHAMP, C
机构
[1] Université de Montréal, Département de Mathématiques, Montréal
关键词
D O I
10.1002/nme.1620120304
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A Finite Element Method using rectangular elements is applied to solve Burgers' non‐linear equation in one space dimension. The non‐linear algebraic equations thus obtained are solved by an iteration which is equivalent to the generalized Newton method. Numerical experiments indicate that the order of accuracy is equal to 2. In two space dimensions, the method is more efficient than other methods we have tested. Copyright © 1978 John Wiley & Sons, Ltd
引用
收藏
页码:415 / 428
页数:14
相关论文
共 15 条
[1]  
AMES WF, 1965, NONLINEAR PARTIAL DI
[2]  
ARMINJON P, 1977, 1975 SEM MATH SUP
[3]  
ARMINJON P, UNPUBLISHED
[4]  
BEAUCHAMP C, 1976, THESIS U MONTREAL
[5]   ON NEW AND DIRECT COMPUTATIONAL APPROACHES TO SOME MATHEMATICAL MODELS OF TURBULENCE [J].
BELLMAN, R ;
AZEN, SP ;
RICHARDSON, JM .
QUARTERLY OF APPLIED MATHEMATICS, 1965, 23 (01) :55-+
[6]  
BELLMAN RE, 1967, NONLINEAR PARTIAL DI
[7]  
Bonnerot R., 1974, International Journal for Numerical Methods in Engineering, V8, P811, DOI 10.1002/nme.1620080410
[8]  
CIARLET PG, 1976, 1975 SEM MATH SUP
[9]   ON A QUASI-LINEAR PARABOLIC EQUATION OCCURRING IN AERODYNAMICS [J].
COLE, JD .
QUARTERLY OF APPLIED MATHEMATICS, 1951, 9 (03) :225-236
[10]  
CROUZEIX M, 1975, THESIS U PARIS 6