SPANNING PROBABILITY IN 2D PERCOLATION

被引:228
作者
ZIFF, RM
机构
[1] Department of Chemical Engineering, University of Michigan, Ann Arbor
关键词
D O I
10.1103/PhysRevLett.69.2670
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The probability R(L)(p) for a site percolation cluster to span a square lattice of side L at occupancy p is reexamined using extensive simulations and exact calculations. It is confirmed that R(L)(p(c)) --> 1/2 as L --> infinity in agreement with universality but not with renormalization-group theory. Many estimates of p(c) that derive from R(L)(p) are shown to scale with L more weakly than normal finite-size scaling, and the value p(c) = 0.592 7460 +/- 0.000 0005 is determined.
引用
收藏
页码:2670 / 2673
页数:4
相关论文
共 24 条
[1]   REAL-SPACE RENORMALIZATION OF BOND-DISORDERED CONDUCTANCE LATTICES [J].
BERNASCONI, J .
PHYSICAL REVIEW B, 1978, 18 (05) :2185-2191
[2]  
BINDER K, 1988, MONTE CARLO METHODS
[3]   CRITICAL PERCOLATION IN FINITE GEOMETRIES [J].
CARDY, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (04) :L201-L206
[4]   MAXIMUM-LENGTH SEQUENCES, CELLULAR AUTOMATA, AND RANDOM NUMBERS [J].
COMPAGNER, A ;
HOOGLAND, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 71 (02) :391-428
[5]  
ESCHBACH PD, 1981, PHYS REV B, V3, P422
[6]  
GEBELE T, 1975, J PHYS A, V9, pL535
[7]  
Golomb S. W., 1967, SHIFT REGISTER SEQUE
[8]  
GRASSBERGER P, IN PRESS J PHYS A
[9]   RENORMALIZATION-GROUP APPROACH TO PERCOLATION PROBLEMS [J].
HARRIS, AB ;
LUBENSKY, TC ;
HOLCOMB, WK ;
DASGUPTA, C .
PHYSICAL REVIEW LETTERS, 1975, 35 (06) :327-330
[10]   INFLUENCE OF BOUNDARY-CONDITIONS ON SQUARE BOND PERCOLATION NEAR PC [J].
HEERMANN, DW ;
STAUFFER, D .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1980, 40 (1-2) :133-136