ON SOME DISSIPATIVE FULLY DISCRETE NONLINEAR GALERKIN SCHEMES FOR THE KURAMOTO-SIVASHINSKY EQUATION

被引:22
作者
FOIAS, C
JOLLY, MS
KEVREKIDIS, IG
TITI, ES
机构
[1] PRINCETON UNIV,DEPT CHEM ENGN,PRINCETON,NJ 08544
[2] UNIV CALIF IRVINE,DEPT MATH,IRVINE,CA 92717
[3] CORNELL UNIV,CTR APPL MATH,ITHACA,NY 14853
基金
美国国家科学基金会;
关键词
D O I
10.1016/0375-9601(94)90926-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that two fully discrete nonlinear Galerkin schemes based on explicit approximate inertial manifolds preserve the dissipativity of the Kuramoto-Sivashinsky equation (KSE). The radius of the absorbing ball is shown to be uniform in both the time step and number of modes, so that the result holds in the PDE limit. While the schemes are specifically designed to deal with the difficulty of the linear instability in the KSE, simpler schemes can be derived following this approach for other dissipative nonlinear evolutionary equations, such as the 2D Navier-Stokes equations.
引用
收藏
页码:87 / 96
页数:10
相关论文
共 45 条
[1]  
ARMERO F, 1993, IN PRESS COMPUT METH
[2]  
AUBRY N, 1993, SIAM J SCI STAT COMP, V14, P591
[3]   GALERKIN PROJECTIONS AND THE PROPER ORTHOGONAL DECOMPOSITION FOR EQUIVARIANT EQUATIONS [J].
BERKOOZ, G ;
TITI, ES .
PHYSICS LETTERS A, 1993, 174 (1-2) :94-102
[4]   A GLOBAL ATTRACTING SET FOR THE KURAMOTO-SIVASHINSKY EQUATION [J].
COLLET, P ;
ECKMANN, JP ;
EPSTEIN, H ;
STUBBE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) :203-214
[5]  
Constantin P., 1989, J DYN DIFFER EQU, V1, P45
[6]  
DEVULDER C, 1993, MATH COMPUT, V60, P495, DOI 10.1090/S0025-5718-1993-1160273-1
[7]   REGULARITY OF SOLUTIONS AND THE CONVERGENCE OF THE GALERKIN METHOD IN THE GINZBURG-LANDAU EQUATION [J].
DOELMAN, A ;
TITI, ES .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1993, 14 (3-4) :299-321
[8]  
Doelman A., 1993, P NATO ADV RES WORKS, P241
[9]  
DUAN ES, 1993, IN PRESS NONLINEARIT, V6
[10]   SEMI-DISCRETIZED NONLINEAR EVOLUTION-EQUATIONS AS DISCRETE DYNAMIC-SYSTEMS AND ERROR ANALYSIS [J].
EDEN, A ;
MICHAUX, B ;
RAKOTOSON, JM .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (03) :737-783