2-STEP METHODS FOR THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION

被引:138
作者
RAPTIS, AD
机构
关键词
D O I
10.1007/BF02279820
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:373 / 378
页数:6
相关论文
共 9 条
[1]  
BUCKINGHAM RA, 1962, NUMERICAL SOLUTION O
[2]  
Cooley JW., 1961, MATH COMPUT, V15, P363, DOI [10.2307/2003025, DOI 10.2307/2003025]
[3]   PERTURBATIVE NUMERICAL-METHODS TO SOLVE THE SCHRODINGER-EQUATION [J].
IXARU, LG .
COMPUTER PHYSICS COMMUNICATIONS, 1980, 20 (01) :97-112
[4]   A NUMEROV-LIKE SCHEME FOR THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION IN THE DEEP CONTINUUM SPECTRUM OF ENERGIES [J].
IXARU, LG ;
RIZEA, M .
COMPUTER PHYSICS COMMUNICATIONS, 1980, 19 (01) :23-27
[5]   CHEBYSHEVIAN MULTISTEP METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS [J].
LYCHE, T .
NUMERISCHE MATHEMATIK, 1972, 19 (01) :65-&
[6]   THE METHOD OF RAPTIS AND ALLISON WITH AUTOMATIC ERROR CONTROL [J].
MOHAMED, J .
COMPUTER PHYSICS COMMUNICATIONS, 1980, 20 (02) :309-320
[7]   EXPONENTIAL-FITTING METHODS FOR NUMERICAL-SOLUTION OF SCHRODINGER EQUATION [J].
RAPTIS, A ;
ALLISON, AC .
COMPUTER PHYSICS COMMUNICATIONS, 1978, 14 (1-2) :1-5
[8]   ON THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION [J].
RAPTIS, AD .
COMPUTER PHYSICS COMMUNICATIONS, 1981, 24 (01) :1-4
[9]  
RAPTIS AD, 1977, THESIS GLASGOW U