2-PARAMETER MIURA TRANSFORMATION OF THE BENJAMIN-ONO EQUATION

被引:78
作者
BOCK, TL
KRUSKAL, MD
机构
[1] Program in Applied Mathematics, Princeton University, Princeton
关键词
D O I
10.1016/0375-9601(79)90762-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Benjamin-Ono equation is shown to admit a two-parameter family of Miura transformations, leading to a proof that the equation has an infinite number of conserved densities. Linearized equations are derived from a special case of the transformation. © 1979.
引用
收藏
页码:173 / 176
页数:4
相关论文
共 10 条
[1]  
ABLOWITZ MJ, 1978, STUD APPL MATH, V58, P17
[2]   INTERNAL WAVES OF PERMANENT FORM IN FLUIDS OF GREAT DEPTH [J].
BENJAMIN, TB .
JOURNAL OF FLUID MECHANICS, 1967, 29 :559-&
[5]   KORTEWEG-DEVRIES EQUATION AND GENERALIZATIONS .6. METHODS FOR EXACT SOLUTION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (01) :97-133
[6]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[7]  
HIROTA R, UNPUBLISHED
[9]   INTERNAL WAVE SOLITONS [J].
MEISS, JD ;
PEREIRA, NR .
PHYSICS OF FLUIDS, 1978, 21 (04) :700-702
[10]   ALGEBRAIC SOLITARY WAVES IN STRATIFIED FLUIDS [J].
ONO, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1975, 39 (04) :1082-1091