GENERALIZATIONS OF CIRCULANTS

被引:14
作者
WANG, K
机构
[1] Department of Mathematics State University of New York at Buffalo, Buffalo
关键词
D O I
10.1016/0024-3795(79)90019-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generalized q-circulant is defined, which is a generalization of circulants. The set of all generalized 1-circulants is a commutative algebra. The determinant and a formula for the Moore-Penrose inverse of a generalized q-circulant are given. © 1979.
引用
收藏
页码:197 / 218
页数:22
相关论文
共 14 条
[1]  
Ablow C. M., 1963, T AM MATH SOC, V107, P360
[2]  
BOULLION TL, 1971, GENERALIZED INVERSE
[3]  
CHAO CY, 1970, LINEAR ALGEBRA ITS A, V3, P165
[4]  
CHAO CY, 1974, KYUNGPOOK MATH J, V14, P97
[5]  
Cline R. E., 1974, Linear Algebra and Its Applications, V8, P25, DOI 10.1016/0024-3795(74)90004-4
[6]  
MUIR T, 1960, THEORY DETERMINANTS, V2, P401
[7]  
ORE O, 1951, DUKE MATH J, V18, P343, DOI 10.1215/S0012-7094-51-01825-X
[8]   PSEUDOINVERSE OF A COMPOSITE MATRIX OF CIRCULANTS [J].
PYE, WC ;
BOULLION, TL ;
ATCHISON, TA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1973, 24 (04) :552-555
[9]   A THEOREM ON CYCLIC MATRICES [J].
SILVA, JA .
DUKE MATHEMATICAL JOURNAL, 1951, 18 (04) :821-825
[10]   MOORE-PENROSE INVERSES OF BLOCK CIRCULANT AND BLOCK K-CIRCULANT MATRICES [J].
SMITH, RL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1977, 16 (03) :237-245