STATE-SPACE THEORY OF AUTOMORPHISMS OF RATIONAL MATRIX FUNCTIONS

被引:7
作者
ALPAY, D
BALL, JA
GOHBERG, I
RODMAN, L
机构
[1] BEN GURION UNIV NEGEV,DEPT MATH,IL-84105 BEER SHEVA,ISRAEL
[2] VIRGINIA POLYTECH INST & STATE UNIV,DEPT MATH,BLACKSBURG,VA 24061
[3] TEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,SCH MATH SCI,IL-69989 RAMAT AVIV,ISRAEL
[4] COLL WILLIAM & MARY,DEPT MATH,WILLIAMSBURG,VA 23187
关键词
D O I
10.1007/BF01200324
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The state space theory from linear control theory is used as a tool to describe the action of automorphisms of a certain form acting on rational matrix functions. This class consists of automorphisms representable as the composition of a linear fractional change of variable together with the operations of inverse-transpose, conjugation and an inner automorphism. We also describe in state space terms minimal factorizations within the class of functions of a certain associated group.
引用
收藏
页码:349 / 377
页数:29
相关论文
共 18 条
[1]  
Alpay D., 1990, VOLUME 47 OPERATOR T, P1
[2]  
Ball J.A., 1990, INTERPOLATION RATION
[3]  
BALL JA, 1990, IMA V MATH, V23, P3
[4]   MINIMAL FACTORIZATION OF MEROMORPHIC MATRIX FUNCTIONS IN TERMS OF LOCAL DATA [J].
BALL, JA ;
GOHBERG, I ;
RODMAN, L .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1987, 10 (03) :309-348
[5]   LOCAL INVERSE SPECTRAL PROBLEMS FOR RATIONAL MATRIX FUNCTIONS [J].
BALL, JA ;
RAN, ACM .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1987, 10 (03) :349-415
[6]  
Bart H., 1979, MINIMAL FACTORIZATIO
[7]  
BOLOTNIKOV VA, 1990, BITANGENTIAL CARATHE
[8]  
DIEUDONNE J, 1962, GEOMETRIE GROUPES CL
[9]  
Dyukarev Y., 1986, T AM MATH SOC, V131, P55
[10]  
Gantmacher, 1959, THEORY MATRICES, P125