Sequence-specific spin-labeled oligodeoxynucleotides with conformation-sensitive electron paramagnetic resonance (EPR) signals are synthesized and examined as solution-phase nucleic acid hybridization probes. Either a proxyl or tempo ring linked to the C(5) position of deoxyuridine (dU) by a nonrigid two-atom methylamino tether is incorporated within 15-mers by phosphotriester chemistry yielding stable spin-labeled probes with distinctive EPR specific activity (A(EPR)) values. The A(EPR) is greater for a proxyl-labeled than for a tempo-labeled probe and is consistent with EPR data of enzymatically labeled 26-mers [Bobst, A. M., Pauly, G. T., Keyes, R. S., and Bobst, E. V. (1988) FEBS Lett. 228, 33-36], after normalizing for percent labeling. The spectral characteristics of the free probes and the probe/target complexes are similar to those of enzymatically spin-labeled nucleic acids containing a different nonrigid two-atom-tethered spin label [Bobst, A. M., Kao, S.-C., Toppin, R. C., Ireland, J. C., and Thomas, I. E. (1984) J. Mol. Biol. 173,63-701. The presence of target DNA is detected in solution by EPR spectroscopy and the assay is based on the characteristic line-shape change associated with hybridization. The EPR spectra of free and bound probe reflect little interference from changes in global dynamics of the probe, and the line-shape change upon complexation results primarily from a change in local base dynamics. The presence or absence of hybridization can be detected in a loop-gap resonator with about 1 pmol of spin-labeled 15-mer within minutes.