STATISTICAL-MECHANICS OF MULTIDIMENSIONAL CANTOR SETS, GODEL THEOREM AND QUANTUM SPACETIME

被引:25
作者
ELNASCHIE, MS
机构
[1] Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 1993年 / 330卷 / 01期
关键词
D O I
10.1016/0016-0032(93)90030-X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Two different descriptions of an abstract n-dimensional dynamical system are discussed: a Sierpinski space setting and a statistical cellular space setting. The results suggest that in four dimensions the phase space dynamics is peano-like and resembles an Anosov diffeomorphism of a compact manifold which is dense and quasi-ergodic. The Hausdorff capacity dimension in this case is d(C)(4) = 3.981 is-approximately-equal-to 4 and we conjecture that the simplest fully developed turbulence is related to d(C)(5) is-approximately-equal-to 6.3. The corresponding Shannon information entropy of the second analysis are L(S)(4) = 3.68 and L(S)(5) = 6.12. The implications of the results for quantum spacetime are outlined and found to be consistent with Heisenberg uncertainty relationship and Bekenstein-Hawking entropy. Finally, the connection between strange nonchaotic behaviour and Godel theorem is discussed.
引用
收藏
页码:199 / 211
页数:13
相关论文
共 27 条
[1]  
Berge P., 1984, ORDRE CHAOS
[2]  
BOSCH K, 1986, ELEMENTARE EINFUEHRU
[3]  
Chaitin G, 1975, SCI AM, P3
[4]  
CHANDLER D, 1987, INTRO MODERN STATIST
[5]  
DUONGVAN M, 1989, DIMENSIONS ENTROPIES, P171
[6]  
Ebeling W., 1989, CHAOS ORDNUNG INFORM
[7]  
El Naschie M. S., 1992, Chaos, Solitons and Fractals, V2, P437, DOI 10.1016/0960-0779(92)90018-I
[8]  
El Naschie M. S., 1992, Speculations in Science and Technology, V15, P138
[9]  
El Naschie M. S., 1992, Chaos, Solitons and Fractals, V2, P91, DOI 10.1016/0960-0779(92)90050-W
[10]   SOLITON CHAOS MODELS FOR MECHANICAL AND BIOLOGICAL ELASTIC CHAINS [J].
ELNASCHIE, MS ;
KAPITANIAK, T .
PHYSICS LETTERS A, 1990, 147 (5-6) :275-281