The solution via dynamic programming (DP) of a reservior optimal control problem is often computationally prohibitive when the proper description of the inflow process leads to a system model having several state variables and/or when a sufficiently dense state discretization is required to achieve numerical accuracy. Thus, to simplify, the inflow correlation is usually neglected and/or a coarse state discretization is adopted. However, these simplifications may significantly affect the reliability of the solution of the optimization problem. Nowadays, the availability of very powerful computers based on innovative architectures (vector and parallel machines), even in the domain of personal computers (transputer architectures), stimulates the reformulation of the standard dynamic programming algorithm in a form able to exploit these new machine architectures. The reformulated DP algorithm and new machines enable faster and less costly solution of optimization problems involving a system model having two state variables (storage and previous period inflow, then taking into account the inflow correlation) and a number of states (of the order of 10(4)) such as to guarantee a high numerical accuracy.