Gram-Schmidt Neural Nets

被引:13
作者
Orfanidis, Sophocles J. [1 ]
机构
[1] Rutgers Univ, Dept Elect & Comp Engn, Piscataway, NJ 08855 USA
关键词
D O I
10.1162/neco.1990.2.1.116
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new type of feedforward multilayer neural net is proposed that exhibits fast convergence properties. It is defined by inserting a fast adaptive Gram-Schmidt preprocessor at each layer, followed by a conventional linear combiner-sigmoid part which is adapted by a fast version of the backpropagation rule. The resulting network structure is the multilayer generalization of the gradient adaptive lattice filter and the Gram-Schmidt adaptive array.
引用
收藏
页码:116 / 126
页数:11
相关论文
共 13 条
[1]  
Compton R. T., 1988, ADAPTIVE ANTENNAS
[2]  
Dahl E. D., 1987, P IEEE 1 INT C NEUR, P11
[3]  
Hush D. R., 1988, P IEEE INT C NEUR NE, P1
[4]   INCREASED RATES OF CONVERGENCE THROUGH LEARNING RATE ADAPTATION [J].
JACOBS, RA .
NEURAL NETWORKS, 1988, 1 (04) :295-307
[5]  
Kollias S., 1988, P IEEE INT C NEUR NE, P1
[6]  
Monzingo R.A., 1980, INTRO ADAPTIVE ARRAY
[7]  
Orfanidis S., 1988, OPTIMUM SIGNAL PROCE, V2nd
[8]  
Parker D. B., 1987, P IEEE 1 INT C NEUR, P11
[9]  
Rumelhart DE, 1986, ENCY DATABASE SYST, P45
[10]  
Sutton R. S.., 1986, P 8 ANN C COGN SCI S