CERTAINTY EQUIVALENTS AND INFORMATION MEASURES - DUALITY AND EXTREMAL PRINCIPLES

被引:26
作者
BENTAL, A
BENISRAEL, A
TEBOULLE, M
机构
[1] RUTGERS STATE UNIV, RUTGERS CTR OPERAT RES, NEW BRUNSWICK, NJ 08903 USA
[2] RUTGERS STATE UNIV, DEPT MATH, NEW BRUNSWICK, NJ 08903 USA
[3] UNIV MARYLAND, DEPT MATH & STAT, CATONSVILLE, MD 21228 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0022-247X(91)90145-P
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a convex function φ: R+ → R, the Csiszár φ-divergence is a function Iφ: R+n × R+n → RIφ (p,q): = ∑ i=1 n qi φ pi qiIφ is a generalized measure of entropy whose distance-like properties make it useful in stochastic optimization and other applications. We establish relations between Iφ and three certainty equivalents, the expected utility (EU), the recourse certainty equivalent (RCE), and Yaari's certainty equivalent (YCE). These relations provide a duality framework for economics of uncertainty and entropy, giving new interpretations and extremal principles for Iφ, EU, RCE, and YCE. © 1970.
引用
收藏
页码:211 / 236
页数:26
相关论文
共 28 条
[1]  
Aczel J., 1984, AEQUATIONES MATH, V27, P1
[2]   PENALTY-FUNCTIONS AND DUALITY IN STOCHASTIC-PROGRAMMING VIA PHI-DIVERGENCE FUNCTIONALS [J].
BENTAL, A ;
TEBOULLE, M .
MATHEMATICS OF OPERATIONS RESEARCH, 1987, 12 (02) :224-240
[3]   THE ENTROPIC PENALTY APPROACH TO STOCHASTIC-PROGRAMMING [J].
BENTAL, A .
MATHEMATICS OF OPERATIONS RESEARCH, 1985, 10 (02) :263-279
[4]   EXPECTED UTILITY, PENALTY-FUNCTIONS, AND DUALITY IN STOCHASTIC NONLINEAR-PROGRAMMING [J].
BENTAL, A ;
TEBOULLE, M .
MANAGEMENT SCIENCE, 1986, 32 (11) :1445-1466
[5]  
BENTAL A, IN PRESS RECOURSE CE
[6]   MINIMUM HELLINGER DISTANCE ESTIMATES FOR PARAMETRIC MODELS [J].
BERAN, R .
ANNALS OF STATISTICS, 1977, 5 (03) :445-463
[7]   ON THE CONVEXITY OF SOME DIVERGENCE MEASURES BASED ON ENTROPY FUNCTIONS [J].
BURBEA, J ;
RAO, CR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (03) :489-495
[8]  
Csiszar I., 1967, STUDIA SCI MATH HUNG, V2, P299
[9]  
Csiszar I., 1978, 7TH T PRAG C INF TH, VB, P73
[10]  
CSISZAR I, 1981, INFORMATION THEORY C