STABILIZATION OF RIGID BODY DYNAMICS BY THE ENERGY CASIMIR METHOD

被引:56
作者
BLOCH, AM
MARSDEN, JE
机构
[1] OHIO STATE UNIV,DEPT MATH,COLUMBUS,OH 43210
[2] UNIV CALIF BERKELEY,DEPT MATH,BERKELEY,CA 94720
基金
美国国家科学基金会;
关键词
Energy-Casimir; feedback; Hamiltonian; rigid body; Stabilization;
D O I
10.1016/0167-6911(90)90055-Y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show how the Energy-Casimir method can be used to prove stabilizability of the angular momentum equations of the rigid body about its intermediate axis of inertia, by a single torque applied about the major or minor axis. We also show how this system has associated with it, a Lie-Poisson bracket which is invariant under SO(3) for small feedback, but is invariant under SO(2, 1) for feedback large enough to achieve stability. © 1990.
引用
收藏
页码:341 / 346
页数:6
相关论文
共 22 条
[1]   COMMENTS ON THE STABILIZABILITY OF THE ANGULAR VELOCITY OF A RIGID BODY [J].
AEYELS, D ;
SZAFRANSKI, M .
SYSTEMS & CONTROL LETTERS, 1988, 10 (01) :35-39
[2]   STABILIZATION OF A CLASS OF NONLINEAR-SYSTEMS BY A SMOOTH FEEDBACK-CONTROL [J].
AEYELS, D .
SYSTEMS & CONTROL LETTERS, 1985, 5 (05) :289-294
[3]  
ALVAREZSANCHEZ G, 1986, THESIS U CALIFORNIA
[4]  
ALVAREZSANCHEZ G, 1989, CONT MATH AMS, V97, P399
[6]   CONTROLLABILITY AND OBSERVABILITY OF POLYNOMIAL DYNAMICAL-SYSTEMS [J].
BAILLIEUL, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1981, 5 (05) :543-552
[7]   ROTATIONAL ELASTIC DYNAMICS [J].
BAILLIEUL, J ;
LEVI, M .
PHYSICA D, 1987, 27 (1-2) :43-62
[8]  
BLOCH A, 1989, 27TH P IEEE C DEC CO
[9]  
Bloch A.M., 1989, THEOR COMP FLUID DYN, V1, P179
[10]  
BONNARD B, 1986, SIAM J CONTROL OPTIM, V22, P711