Upper and lower bounds for the waiting time in the symmetric shortest queue system

被引:27
作者
Adan, Ivo [1 ]
van Houtum, Geert-Jan [1 ]
van der Wal, Jan [1 ]
机构
[1] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
关键词
D O I
10.1007/BF02024665
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we compare the exponential symmetric shortest queue system with two related systems: the shortest queue system with Threshold Jockeying and the shortest queue system with Threshold Blocking. The latter two systems are easier to analyse and are shown to give tight lower and upper bounds respectively for the mean waiting time in the shortest queue system. The approach also gives bounds for the distribution of the total number of jobs in the system.
引用
收藏
页码:197 / 217
页数:21
相关论文
共 29 条
[1]  
ADAN IJB, 1990, STOCH MODELS, V6, P691
[2]   MATRIX-GEOMETRIC ANALYSIS OF THE SHORTEST QUEUE PROBLEM WITH THRESHOLD JOCKEYING [J].
ADAN, IJBF ;
WESSELS, J ;
ZIJM, WHM .
OPERATIONS RESEARCH LETTERS, 1993, 13 (02) :107-112
[3]   THE POWER-SERIES ALGORITHM APPLIED TO THE SHORTEST-QUEUE MODEL [J].
BLANC, JPC .
OPERATIONS RESEARCH, 1992, 40 (01) :157-167
[4]  
COHEN JW, 1983, BOUNDARY VALUE PROBL
[5]   THE AUTOSTRADA QUEUING PROBLEM [J].
CONOLLY, BW .
JOURNAL OF APPLIED PROBABILITY, 1984, 21 (02) :394-403
[6]   2 COUPLED PROCESSORS - REDUCTION TO A RIEMANN-HILBERT PROBLEM [J].
FAYOLLE, G ;
IASNOGORODSKI, R .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 47 (03) :325-351
[7]   2 QUEUES IN PARALLEL [J].
FLATTO, L ;
MCKEAN, HP .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (02) :255-263
[8]  
Flatto L., 1977, RC5916 IBM
[9]   BASIC DYNAMIC ROUTING PROBLEM AND DIFFUSION [J].
FOSCHINI, GJ ;
SALZ, J .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1978, 26 (03) :320-327