SOME LIMIT RESULTS FOR LONGEST COMMON SUBSEQUENCES

被引:36
作者
DEKEN, JG
机构
[1] Department of Statistics, Princeton University, Princeton
关键词
D O I
10.1016/0012-365X(79)90057-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The length ln of a longest common subsequence before time n sequences (B11, B12, ...) (B21, B22, ...) is the cardinality of the largest increasing set of pairs of integers {(j1α, j2α)} l≤j11<j12<·<j11n≤n l≤j21<j22<·<j21n≤n such that ∀1≤α≤ln, (B1j1α=B2j2α). If B1 and B2 are independent random sequences with co-ordinates i.i.d. uniform on {1, 2, ..., k}, it follows from Kingman's subadditive ergodic theorem that the ratio ln/n converges to a constant ck a.s. A method of deriving lower bounds for the constants ck is given, the bounds obtained improving known lower bounds, for k>2. The rate of decrease of ck with k is shown to be no faster than 1/√k, contrasting with P{B1i-B2i}=1/k. Finally, an alternative method of deriving lower bounds is given and used to improve the lower bound for c2. © 1979.
引用
收藏
页码:17 / 31
页数:15
相关论文
共 10 条
[1]  
AHO AV, 1976, J ACM, V23, P1, DOI 10.1145/321921.321922
[2]  
CHVATAL V, 1975, J APPL PROBAB, V12
[3]  
CHVATAL V, CS75477 STANF U DEP
[4]   ALGORITHMS FOR LONGEST COMMON SUBSEQUENCE PROBLEM [J].
HIRSCHBERG, DS .
JOURNAL OF THE ACM, 1977, 24 (04) :664-675
[5]   SUBADDITIVE ERGODIC THEORY [J].
KINGMAN, JFC .
ANNALS OF PROBABILITY, 1973, 1 (06) :883-899
[6]   METHOD FOR CORRECTION OF GARBLED WORDS BASED ON LEVENSHTEIN METRIC [J].
OKUDA, T ;
TANAKA, E ;
KASAI, T .
IEEE TRANSACTIONS ON COMPUTERS, 1976, 25 (02) :172-178
[7]   FREQUENCY OF INSERTION-DELETION, TRANSVERSION, AND TRANSITION IN EVOLUTION OF 5S RIBOSOMAL-RNA [J].
SANKOFF, D ;
CEDERGREN, RJ ;
LAPALME, G .
JOURNAL OF MOLECULAR EVOLUTION, 1976, 7 (02) :133-149
[8]   TREE-TO-TREE EDITING PROBLEM [J].
SELKOW, SM .
INFORMATION PROCESSING LETTERS, 1977, 6 (06) :184-186
[9]  
Sellers P. H., 1974, Journal of Combinatorial Theory, Series A, V16, P253, DOI 10.1016/0097-3165(74)90050-8
[10]   STRING-TO-STRING CORRECTION PROBLEM [J].
WAGNER, RA ;
FISCHER, MJ .
JOURNAL OF THE ACM, 1974, 21 (01) :168-173