Time-of-flight pulsed ion beam surface analysis as a means of in situ, real-time characterization of the growth of ferro-electric and conductive oxide heterostructures

被引:4
作者
Krauss, AR
Auciello, O
Lin, Y
Chang, RPH
Gruen, DM
机构
[1] ARGONNE NATL LAB, DIV CHEM, ARGONNE, IL 60439 USA
[2] MICROELECTR CTR N CAROLINA, ELECT TECHNOL DIV, RES TRIANGLE PK, NC 27709 USA
[3] NORTHWESTERN UNIV, DEPT MAT SCI, EVANSTON, IL 60208 USA
关键词
D O I
10.1080/10584589508012307
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Pulsed beam Time-of-Flight Ion Scattering and Recoil Spectroscopy (TOF-ISARS) surface analysis methods have been developed which permit realtime, in situ characterization of the growth layer of multi-component oxide thin films. Results are presented from a study of the deposition of Pb, Zr, Ti and Ru using a sequential layer-by-layer deposition method under ambient oxygen pressure conditions appropriate to the growth of PZT films, revealing layer-by-layer as well as 2D and 3D island growth processes during deposition. Thermodynamic stability conditions result in modification of the layered structure during deposition, in some cases altering the layer ordering of the growth region. Calculations using the Miedema model for surface segregation are in accord with experimental results that reveal an exchange between deposited Zr and Ti atoms and an underlying Pb layer. In addition, the room temperature studies revealed that Pb grows layer-by-layer, nucleating as 2D islands, while Zr tends to form three-dimensional islands. At room temperature, the Zr surface concentration is strongly enhanced by the presence of oxygen, but at high temperatures, surface Pb is found to be stabilized by the presence of an oxygen ambient, illustrating the importance of real-time, in situ analysis of the growth layer as opposed to more conventional surface analytical methods which require interruption of the deposition process in order to characterize the film surface.
引用
收藏
页码:129 / 142
页数:14
相关论文
共 32 条
[1]  
ALSHAREEF HN, 1993, P 5 INT S INT FERR
[2]  
AUCIELLO O, 1993, NATO ASI E, V234
[3]  
AUCIELLO O, 1994, IN PRESS APPL P 0526
[4]  
AUCIELLO O, 1994, P SPRING M MAT RES S
[5]   ELECTRICAL AND RELIABILITY PROPERTIES OF PZT THIN-FILMS FOR ULSI DRAM APPLICATIONS [J].
CARRANO, J ;
SUDHAMA, C ;
CHIKARMANE, V ;
LEE, J ;
TASCH, A ;
SHEPHERD, W ;
ABT, N .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1991, 38 (06) :690-703
[6]  
DAT R, 1994, IN PRESS APPL PHYS L
[7]  
DEARAUJO CAP, 1991, P 3 INT S INT FERR
[8]  
DEARAUJO CAP, 1992, P 4 INT S INT FERR
[9]   INTEGRATED SOL-GEL PZT THIN-FILMS ON PT, SI, AND GAAS FOR NONVOLATILE MEMORY APPLICATIONS [J].
DEY, SK ;
ZULEEG, R .
FERROELECTRICS, 1990, 108 :37-46
[10]   AN EXPERIMENTAL 512-BIT NONVOLATILE MEMORY WITH FERROELECTRIC STORAGE CELL [J].
EVANS, JT ;
WOMACK, R .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1988, 23 (05) :1171-1175