RELATIVISTIC CORRECTIONS TO ATOMIC ENERGIES FROM QUANTUM MONTE-CARLO CALCULATIONS

被引:29
作者
KENNY, SD
RAJAGOPAL, G
NEEDS, RJ
机构
[1] Cavendish Laboratory, Cambridge CB3 0HE, Madingley Road
来源
PHYSICAL REVIEW A | 1995年 / 51卷 / 03期
关键词
D O I
10.1103/PhysRevA.51.1898
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Relativistic corrections to the ground-state energies of the He, Be2+, Ne8+, Be, and Ne atoms are calculated using first-order perturbation theory, yielding results accurate to order 1/c2, where c is the velocity of light. Accurate nonrelativistic wave functions and variational and diffusion quantum Monte Carlo techniques are used to calculate the required expectation values. Our results agree with previous work for the two-electron cases, and in all cases we obtain excellent agreement with the experimental total energies. Our values for the expectation values of the relativistic correction to the Coulomb interaction (the Breit interaction) are considerably smaller than those calculated within Dirac-Fock theory, and therefore our calculations give a quantitative estimate of the importance of correlation effects in determining this contribution. © 1995 The American Physical Society.
引用
收藏
页码:1898 / 1904
页数:7
相关论文
共 26 条
[1]  
Bashkin S., 1975, ATOMIC ENERGY LEVELS, V1
[2]  
BETHE HA, 1957, QUANTUM MECHANICS ON
[3]  
Ceperley D., 1979, MONTE CARLO METHODS
[4]   RELATIVISTIC CONFIGURATION-INTERACTION CALCULATIONS FOR THE GROUND-STATE AND N = 2 SINGLET-STATES OF HELIUM-LIKE IONS [J].
CHENG, KT ;
CHEN, MH ;
JOHNSON, WR ;
SAPIRSTEIN, J .
PHYSICAL REVIEW A, 1994, 50 (01) :247-255
[5]  
COLDWELL RL, 1977, INT J QUANTUM CHEM, P215
[6]   GROUND-STATE CORRELATION ENERGIES FOR 2-ELECTRON TO 10-ELECTRON ATOMIC IONS [J].
DAVIDSON, ER ;
HAGSTROM, SA ;
CHAKRAVORTY, SJ ;
UMAR, VM ;
FISCHER, CF .
PHYSICAL REVIEW A, 1991, 44 (11) :7071-7083
[8]   VARIATIONAL-METHODS FOR DIRAC WAVE-EQUATIONS [J].
GRANT, IP .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1986, 19 (20) :3187-3205
[9]  
GRANT IP, 1988, RELATIVISTIC EFFECTS
[10]  
HAMMOND BL, 1994, MONTE CARLO METHODS