AVERAGING IN DYNAMIC-SYSTEMS AND LARGE DEVIATIONS

被引:37
作者
KIFER, Y
机构
[1] Institute of Mathematics, Hebrew University, Jerusalem
关键词
D O I
10.1007/BF01231336
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper treats ordinary differential equations of the form dZ(epsilon)(t)/dt = epsilonB(Z(epsilon)(t),f(t)y) where f(t) is a hyperbolic flow. Large deviations bounds for the averaging principle are obtained here in the form appeared previously in [F1, F2] for the case when the flow f(t) is replaced by a Markov process.
引用
收藏
页码:337 / 370
页数:34
相关论文
共 20 条
[1]  
Anosov D. V., 1967, RUSSIAN MATH SURVEYS, V22, P103, DOI 10.1070/RM1967v022n0
[2]  
Arnold VI., 1983, GEOMETRICAL METHODS
[3]  
AUBIN JP, 1984, APPLIED NONLINEAR AN
[4]  
Bogolyubov N. N., 1961, ASYMPTOTIC METHODS T
[5]   ERGODIC THEORY OF AXIOM A FLOWS [J].
BOWEN, R ;
RUELLE, D .
INVENTIONES MATHEMATICAE, 1975, 29 (03) :181-202
[6]  
BOWEN R, 1975, MATH SYST THEORY, V9, P193
[7]  
DENKER M, 1976, LECT NOTES MATH, V257
[8]   FLOWS WITH UNIQUE EQUILIBRIUM STATES [J].
FRANCO, E .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (03) :486-514
[9]  
FREIDLIN M, 1976, SOV MATH DOKL, V17, P104
[10]  
Ioffe AD., 1979, THEORY EXTREMAL PROB