SIMPLE PROOF OF THE MEAN ERGODIC THEOREM FOR NON-LINEAR CONTRACTIONS IN BANACH-SPACES

被引:210
作者
BRUCK, RE
机构
[1] Department of Mathematics, University of Southern California, Los Angeles, 90007, Calif.
关键词
D O I
10.1007/BF02764907
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following theorem is proven:if E is a uniformly rotund Banach space with a Fréchet differentiable norm, C is a bounded nonempty closed convex subset of E, and T: C→C is a contraction, then the iterates {T nx} are weakly almost-convergent to a fixed-point of T. © 1979 The Weizmann Science Press of Israel.
引用
收藏
页码:107 / 116
页数:10
相关论文
共 7 条
[1]  
BAILLON JB, PREPRINT
[2]  
BAILLON JB, UNPUBLISHED
[3]  
Browder F.E., 1976, P S PURE MATH 2, V18
[4]  
BRUCK RE, 1978, ISRAEL J MATH, V29, P1, DOI 10.1007/BF02760397
[5]  
BRUCK RE, 1977, NOTICES AM MATH SOC, V24, pA474
[6]   COMMON FIXED POINTS FOR COMMUTING CONTRACTION MAPPINGS [J].
DEMARR, R .
PACIFIC JOURNAL OF MATHEMATICS, 1963, 13 (04) :1139-&
[7]   A CONTRIBUTION TO THE THEORY OF DIVERGENT SEQUENCES [J].
LORENTZ, GG .
ACTA MATHEMATICA, 1948, 80 (03) :167-190