LAGRANGIAN REDUCTION AND THE DOUBLE SPHERICAL PENDULUM

被引:86
作者
MARSDEN, JE [1 ]
SCHEURLE, J [1 ]
机构
[1] INST ANGEW MATH,W-2000 HAMBURG 13,GERMANY
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 1993年 / 44卷 / 01期
关键词
D O I
10.1007/BF00914351
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the stability and bifurcations of the relative equilibrium of the double spherical pendulum, which has the circle as its symmetry group. The example as well as others with nonabelian symmetry groups, such as the rigid body, illustrate some useful general theory about Lagrangian reduction. In particular, we establish a satisfactory global theory of Lagrangian reduction that is consistent with the classical local Routh theory for systems with an abelian symmetry group.
引用
收藏
页码:17 / 43
页数:27
相关论文
共 54 条
[1]  
ABRAHAM R, 1978, F MECHANICS
[2]  
[Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
[3]   SYMMETRY AND BIFURCATIONS OF MOMENTUM MAPPINGS [J].
ARMS, JM ;
MARSDEN, JE ;
MONCRIEF, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 78 (04) :455-478
[4]  
ARMS JM, 1991, GEOMETRY HAMILTONIAN, P33
[6]  
ARNOLD VI, 1988, ENCY MATH, V3
[7]  
Arnold VI., 1989, GRADUATE TEXTS MATH, V2, DOI 10.1007/978-1-4757-2063-1
[8]  
BAILLEUL J, 1991, COMMUNICATION
[9]   CONSTRAINED RELATIVE MOTIONS IN ROTATIONAL MECHANICS [J].
BAILLIEUL, J ;
LEVI, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 115 (02) :101-135
[10]   ROTATIONAL ELASTIC DYNAMICS [J].
BAILLIEUL, J ;
LEVI, M .
PHYSICA D, 1987, 27 (1-2) :43-62