PHYSICAL AND NUMERICAL EXPERIMENTS ON THE WAVE MECHANICS OF CLASSICALLY CHAOTIC SYSTEMS

被引:86
作者
SRIDHAR, S
HELLER, EJ
机构
[1] UNIV WASHINGTON, DEPT CHEM, SEATTLE, WA 98195 USA
[2] UNIV WASHINGTON, DEPT PHYS, SEATTLE, WA 98195 USA
来源
PHYSICAL REVIEW A | 1992年 / 46卷 / 04期
关键词
D O I
10.1103/PhysRevA.46.R1728
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study chaotic quantum billiards using both microwave cavities and numerical simulations. For the same geometry, viz., a Sinai billiard, agreement to remarkable precision is found for both the eigenvalue magnitudes and the spatial detail of the eigenfunctions. The association of the eigenfunctions with classical periodic orbits is demonstrated, and scarred states axe identified. De-symmetrizing the Sinai billiard by slightly moving the central disk is shown to lead to strong localization of the eigenfunction. The calculated eigenstates of the symmetric billiard show an even- and odd-parity pair whose linear combination gives the localized state.
引用
收藏
页码:R1728 / R1731
页数:4
相关论文
共 34 条
[1]   MULTIPHOTON IONIZATION OF HIGHLY EXCITED HYDROGEN-ATOMS [J].
BAYFIELD, JE ;
KOCH, PM .
PHYSICAL REVIEW LETTERS, 1974, 33 (05) :258-261
[2]   A RULE FOR QUANTIZING CHAOS [J].
BERRY, MV ;
KEATING, JP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21) :4839-4849
[3]   QUANTUM SCARS OF CLASSICAL CLOSED ORBITS IN PHASE-SPACE [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1989, 423 (1864) :219-231
[4]   A SIMPLE-MODEL FOR CHAOTIC SCATTERING .2. QUANTUM-MECHANICAL THEORY [J].
BLUMEL, R ;
SMILANSKY, U .
PHYSICA D, 1989, 36 (1-2) :111-136
[5]   SMOOTHED WAVE-FUNCTIONS OF CHAOTIC QUANTUM-SYSTEMS [J].
BOGOMOLNY, EB .
PHYSICA D, 1988, 31 (02) :169-189
[6]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4
[7]   DYNAMIC QUASIDEGENERACIES AND SEPARATION OF REGULAR AND IRREGULAR QUANTUM LEVELS [J].
BOHIGAS, O ;
TOMSOVIC, S ;
ULLMO, D .
PHYSICAL REVIEW LETTERS, 1990, 64 (13) :1479-1482
[8]   PERIODIC-ORBIT QUANTIZATION OF CHAOTIC SYSTEMS [J].
CVITANOVIC, P ;
ECKHARDT, B .
PHYSICAL REVIEW LETTERS, 1989, 63 (08) :823-826
[9]   SCARS OF SYMMETRIES IN QUANTUM CHAOS [J].
DELANDE, D ;
GAY, JC .
PHYSICAL REVIEW LETTERS, 1987, 59 (16) :1809-1812
[10]   SEMICLASSICAL INTERPRETATION OF EIGENVECTORS FOR EXCITED ATOMS IN EXTERNAL FIELDS [J].
DELOS, JB ;
WATERLAND, RL ;
DU, ML .
PHYSICAL REVIEW A, 1988, 37 (04) :1185-1207