Small Depth Polynomial Size Neural Networks

被引:7
作者
Obradovic, Zoran [1 ]
Yan, Peiyuan [2 ]
机构
[1] Penn State Univ, Dept Comp Sci, University Pk, PA 16802 USA
[2] Lycoming Coll, Math Dept, Williamsport, PA 17701 USA
关键词
D O I
10.1162/neco.1990.2.4.402
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For polynomially bounded weights and polylogarithmic precision, analog neural networks of polynomial size and depth 3 are strictly more powerful than those of polynomial size and depth 2.
引用
收藏
页码:402 / 404
页数:3
相关论文
共 5 条
[1]  
Hajnal A., 1987, 28th Annual Symposium on Foundations of Computer Science (Cat. No.87CH2471-1), P99, DOI 10.1109/SFCS.1987.59
[2]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[3]  
Obradovic Z., 1990, Machine Learning: Proceedings of the Seventh International Conference (1990), P392
[4]  
Obradovic Z., 1990, CS9028 PENNS STAT U
[5]  
Obradovic Z., 1990, ADV NEURAL INFORM PR, P702