LIFETIME OF REGULAR SOLUTIONS OF 2-DIMENSIONAL AXIALLY SYMMETRICAL COMPRESSIBLE EULER EQUATIONS

被引:72
作者
ALINHAC, S
机构
关键词
D O I
10.1007/BF01231301
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the 2D isentropic Euler equations; for rotationnally invariant data which are a perturbation of size epsilon of a rest state, we establish the first term asymptotic of the life span T(epsilon) of the classical solution (lim epsilon2 T(epsilon) = tau*2). Moreover, we give, for t less-than-or-equal-to A2/epsilon2 (A < tau*) an estimate of the true solution, by computing the size of its difference with an approximate solution obtained in a previous work.
引用
收藏
页码:627 / 670
页数:44
相关论文
共 12 条
[1]  
ALINHAC S, 1992, COMMUN PART DIFF EQ, V17, P447
[2]  
ALINHAC S, 1991, FEV SEM EDP PAR
[3]  
CHEMIN JY, 1989, REMARQUES APPARITION
[4]  
COURANT R, 1949, SUPERSONIC FLOW SHOC
[5]  
HORMANDER L, 1986, LECTURES
[6]  
HORMANDER L, 1985, 5 MITT LEFFL REP
[7]   FORMATION OF SINGULARITIES IN ONE-DIMENSIONAL NONLINEAR-WAVE PROPAGATION [J].
JOHN, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (03) :377-405
[8]  
JOHN F, 1984, BLOW UP RADIAL SOLUT
[10]   HYPERBOLIC SYSTEMS OF CONSERVATION LAWS .2. [J].
LAX, PD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1957, 10 (04) :537-566