ON THE LAW OF THE LOGARITHM FOR DENSITY ESTIMATORS

被引:5
作者
HALL, P
机构
[1] Statistics Research Section, Australian National University, Canberra
关键词
Density estimation; law of the logarithm; rate of convergence; uniform metric;
D O I
10.1016/0167-7152(90)90062-C
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It has been conjectured that the form of the so-called 'law of the logarithm' for kernel density estimators depends on tail properties of the kernel. We show that this is not the case, and extend work of other authors to uniform convergence when the supremum is taken over an unbounded interval and when the kernel has unbounded support. © 1990.
引用
收藏
页码:237 / 240
页数:4
相关论文
共 13 条
[1]  
GREGORY GG, 1979, COMPUTER SCI STATIST, P427
[3]  
RAO BLS, 1963, NONPARAMETRIC FUNCTI
[4]  
Reiss R.-D., 1975, Metrika, V22, P189, DOI 10.1007/BF01899727
[5]  
Revesz P., 1978, Periodica Mathematica Hungarica, V9, P317, DOI 10.1007/BF02019438
[6]   WEAK AND STRONG UNIFORM CONSISTENCY OF KERNEL ESTIMATE OF A DENSITY AND ITS DERIVATIVES [J].
SILVERMAN, BW .
ANNALS OF STATISTICS, 1978, 6 (01) :177-184
[7]  
SILVERMAN BW, 1978, BIOMETRIKA, V65, P1
[8]  
SILVERMAN BW, 1978, MATH P CAMBRIDGE PHI, V80, P135
[9]   THE OSCILLATION BEHAVIOR OF EMPIRICAL PROCESSES [J].
STUTE, W .
ANNALS OF PROBABILITY, 1982, 10 (01) :86-107
[10]   A LAW OF THE LOGARITHM FOR KERNEL DENSITY ESTIMATORS [J].
STUTE, W .
ANNALS OF PROBABILITY, 1982, 10 (02) :414-422