ASYMPTOTIC-BEHAVIOR OF A 2-DIMENSIONAL RANDOM-WALK WITH TOPOLOGICAL CONSTRAINTS

被引:3
作者
KORALOV, LB [1 ]
NECHAEV, SK [1 ]
SINAI, YG [1 ]
机构
[1] LANDAU INST THEORET PHYS,MOSCOW 117940,RUSSIA
关键词
RANDOM WALK; LIMITING DISTRIBUTION; CAYLEY TREE; MARKOV CHAIN; WIENER BRANCHING PROCESS; STATISTICAL WEIGHT;
D O I
10.1137/1138026
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A set of topologically trivial closed random walks on the plane is discussed, i.e., the walks that can be contracted to points and remain on the lattice during deformation. As the walk length tends to infinity, the limiting finite-dimensional distributions can be found for normalized coordinates, which can be described in terms of the Wiener branching process.
引用
收藏
页码:296 / 306
页数:11
相关论文
共 6 条
[1]  
FELLER W, 1966, INTRO PROBABILITY TH, V1
[2]   POLYMER-CHAIN IN AN ARRAY OF OBSTACLES [J].
KHOKHLOV, AR ;
NECHAEV, SK .
PHYSICS LETTERS A, 1985, 112 (3-4) :156-160
[3]  
Koralov L. B., 1991, Chaos, V1, P131, DOI 10.1063/1.165821
[4]   A STATISTICAL-THEORY OF ENTANGLED LATTICE POLYMERS [J].
MEHTA, A ;
NEEDS, RJ ;
THOULESS, DJ .
EUROPHYSICS LETTERS, 1991, 14 (02) :113-117
[5]   DYNAMICS OF A POLYMER-CHAIN IN AN ARRAY OF OBSTACLES [J].
NECHAEV, SK ;
SEMENOV, AN ;
KOLEVA, MK .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1987, 140 (03) :506-520
[6]  
Sevastyanov B., 1971, BRANCHING PROCESSES