PATH-INTEGRALS FOR DISSIPATIVE SYSTEMS BY TENSOR MULTIPLICATION - CONDENSED-PHASE QUANTUM DYNAMICS FOR ARBITRARILY LONG-TIME

被引:274
作者
MAKAROV, DE
MAKRI, N
机构
[1] School of Chemical Sciences, University of Illinois, Urbana, IL 61801
关键词
D O I
10.1016/0009-2614(94)00275-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Feynman's influence functional that arises from many-particle environments is nonlocal in time but the nonlocality has finite range, even at very low temperature. Use of our numerically constructed quasi-adiabatic propagators permits large time steps in the path integral, such that the nonlocality of the influence functional spans only a few time steps. We exploit these observations to propose an iterative scheme for the evaluation of path integrals by stepwise multiplication of a propagator tensor, thereby making exact quantum dynamics calculations in condensed phase systems feasible for arbitrarily long times.
引用
收藏
页码:482 / 491
页数:10
相关论文
共 25 条
[1]   PATH INTEGRAL APPROACH TO QUANTUM BROWNIAN-MOTION [J].
CALDEIRA, AO ;
LEGGETT, AJ .
PHYSICA A, 1983, 121 (03) :587-616
[2]   QUANTUM TUNNELLING IN A DISSIPATIVE SYSTEM [J].
CALDEIRA, AO ;
LEGGETT, AJ .
ANNALS OF PHYSICS, 1983, 149 (02) :374-456
[3]   EQUILIBRIUM AND DYNAMICAL FOURIER PATH INTEGRAL METHODS [J].
Doll, J. D. ;
Freeman, David L. ;
Beck, Thomas L. .
ADVANCES IN CHEMICAL PHYSICS <D>, 1990, 78 :61-127
[4]  
Feynman R. P., 1964, QUANTUM MECH PATH IN
[5]   THE THEORY OF A GENERAL QUANTUM SYSTEM INTERACTING WITH A LINEAR DISSIPATIVE SYSTEM [J].
FEYNMAN, RP ;
VERNON, FL .
ANNALS OF PHYSICS, 1963, 24 (01) :118-173
[6]   SPACE-TIME APPROACH TO NON-RELATIVISTIC QUANTUM MECHANICS [J].
FEYNMAN, RP .
REVIEWS OF MODERN PHYSICS, 1948, 20 (02) :367-387
[7]  
FISHER SF, 1969, J CHEM PHYS, V51, P3951
[8]   STATISTICAL MECHANICS OF ASSEMBLIES OF COUPLED OSCILLATORS [J].
FORD, GW ;
KAC, M ;
MAZUR, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (04) :504-+
[9]  
HOFACKER L, 1963, Z NATURFORSCH PT A, VA 18, P607
[10]   TUNNELING DYNAMICS IN DISSIPATIVE CURVE-CROSSING PROBLEMS [J].
MAKAROV, DE ;
MAKRI, N .
PHYSICAL REVIEW A, 1993, 48 (05) :3626-3635