GLOBAL PARAMETER OPTIMIZATION FOR CARDIAC POTASSIUM CHANNEL GATING MODELS

被引:34
作者
BALSER, JR
RODEN, DM
BENNETT, PB
机构
[1] VANDERBILT UNIV, MED CTR, SCH MED, DEPT MED, CC-2209 MED CTR N, NASHVILLE, TN 37232 USA
[2] VANDERBILT UNIV, MED CTR, SCH MED, NASHVILLE, TN 37232 USA
关键词
D O I
10.1016/S0006-3495(90)82560-1
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Quantitative ion channel model evaluation requires the estimation of voltage dependent rate constants. We have tested whether a unique set of rate constants can be reliably extracted from nonstationary macroscopic voltage clamp potassium current data. For many models, the rate constants derived independently at different membrane potentials are not unique. Therefore, our approach has been to use the exponential voltage dependence predicted from reaction rate theory (Stevens, C. F. 1978. Biophys. J. 22:295–306; Eyring, H., S. H. Lin, and S. M. Lin. 1980. Basic Chemical Kinetics. Wiley and Sons, New York) to couple the rate constants derived at different membrane potentials. This constrained the solution set of rate constants to only those that also obeyed this additional set of equations, which was sufficient to obtain a unique solution. We have tested this approach with data obtained from macroscopic delayed rectifier potassium channel currents in voltage-clamped guinea pig ventricular myocyte membranes. This potassium channel has relatively simple kinetics without an inactivation process and provided a convenient system to determine a globally optimized set of voltage-dependent rate constants for a Markov kinetic model. The ability of the fitting algorithm to extract rate constants from the macroscopic current data was tested using "data" synthesized from known rate constants. The simulated data sets were analyzed with the global fitting procedure and the fitted rate constants were compared with the rate constants used to generate the data. Monte Carlo methods were used to examine the accuracy of the estimated kinetic parameters. This global fitting approach provided a useful and convenient method for reliably extracting Markov rate constants from macroscopic voltage clamp data over a broad range of membrane potentials. The limitations of the method and the dependence on initial guesses are described. © 1990, The Biophysical Society. All rights reserved.
引用
收藏
页码:433 / 444
页数:12
相关论文
共 37 条
[1]  
[Anonymous], 1969, DATA REDUCTION ERROR
[2]  
[Anonymous], 1979, MONTE CARLO METHODS
[3]   SODIUM-CHANNELS AND GATING CURRENTS [J].
ARMSTRONG, CM .
PHYSIOLOGICAL REVIEWS, 1981, 61 (03) :644-683
[4]  
AUER RJ, 1987, BIOPHYS J, V52, P961
[5]  
BALSER JR, 1988, BIOPHYS J, V53, pA642
[6]   ADRENERGIC MODULATION OF THE DELAYED RECTIFIER POTASSIUM CHANNEL IN CALF CARDIAC PURKINJE-FIBERS [J].
BENNETT, P ;
MCKINNEY, L ;
BEGENISICH, T ;
KASS, RS .
BIOPHYSICAL JOURNAL, 1986, 49 (04) :839-848
[7]   NONSTATIONARY FLUCTUATION ANALYSIS OF THE DELAYED RECTIFIER-K CHANNEL IN CARDIAC PURKINJE-FIBERS - ACTIONS OF NOREPINEPHRINE ON SINGLE-CHANNEL CURRENT [J].
BENNETT, PB ;
KASS, R ;
BEGENISICH, T .
BIOPHYSICAL JOURNAL, 1989, 55 (04) :731-738
[8]   DELAYED RECTIFICATION IN THE CALF CARDIAC PURKINJE-FIBER - EVIDENCE FOR MULTIPLE STATE KINETICS [J].
BENNETT, PB ;
MCKINNEY, LC ;
KASS, RS ;
BEGENISICH, T .
BIOPHYSICAL JOURNAL, 1985, 48 (04) :553-567
[9]  
CACECI MS, 1984, BYTE, V9, P340
[10]  
CLAPMAN DE, 1985, BIOPHYS J, V45, P40