TOPOLOGICAL QUANTUM-MECHANICS

被引:19
作者
HUSAIN, V
机构
[1] Department of Physics, University of Utah, Salt Lake City
来源
PHYSICAL REVIEW D | 1991年 / 43卷 / 06期
关键词
D O I
10.1103/PhysRevD.43.1803
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The quantum theory of a type of generally covariant field theory, that has no local degrees of freedom, is described. Physical observables that capture topological properties of the manifold are identified and a representation of their Poisson algebra is constructed to obtain the quantum theory. A non-Abelian generalization to SU(2) is also discussed in a similar way.
引用
收藏
页码:1803 / 1807
页数:5
相关论文
共 12 条
[1]   NEW VARIABLES FOR CLASSICAL AND QUANTUM-GRAVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW LETTERS, 1986, 57 (18) :2244-2247
[2]   NEW HAMILTONIAN-FORMULATION OF GENERAL-RELATIVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW D, 1987, 36 (06) :1587-1602
[3]   2 + 1 QUANTUM-GRAVITY AS A TOY MODEL FOR THE 3 + 1 THEORY [J].
ASHTEKAR, A ;
HUSAIN, V ;
ROVELLI, C ;
SAMUEL, J ;
SMOLIN, L .
CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (10) :L185-L193
[4]  
Ashtekar A., 1988, NEW PERSPECTIVES CAN
[5]   COVARIANT ACTION FOR ASHTEKAR FORM OF CANONICAL GRAVITY [J].
JACOBSON, T ;
SMOLIN, L .
CLASSICAL AND QUANTUM GRAVITY, 1988, 5 (04) :583-594
[6]   THE LEFT-HANDED SPIN CONNECTION AS A VARIABLE FOR CANONICAL GRAVITY [J].
JACOBSON, T ;
SMOLIN, L .
PHYSICS LETTERS B, 1987, 196 (01) :39-42
[7]   OBSERVABLES IN 2 + 1 DIMENSIONAL GRAVITY [J].
MARTIN, SP .
NUCLEAR PHYSICS B, 1989, 327 (01) :178-204
[8]   LOOP SPACE REPRESENTATION OF QUANTUM GENERAL-RELATIVITY [J].
ROVELLI, C ;
SMOLIN, L .
NUCLEAR PHYSICS B, 1990, 331 (01) :80-152
[9]   KNOT-THEORY AND QUANTUM-GRAVITY [J].
ROVELLI, C ;
SMOLIN, L .
PHYSICAL REVIEW LETTERS, 1988, 61 (10) :1155-1158
[10]   A LAGRANGIAN BASIS FOR ASHTEKAR REFORMULATION OF CANONICAL GRAVITY [J].
SAMUEL, J .
PRAMANA, 1987, 28 (04) :L429-L432